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Glossary and summary

This section contains detailed descriptions of all the Time-Frequency Toolbox functions. It begins with a
glossary and a list of functions grouped by subject area and continues with the reference entries in alphabetical
order. Information is also available through the online help facility.

AF Ambiguity function
AR Auto-regressive (filter or model)

ASK Amplitude shift keyed signal
BJD Born-Jordan distribution

BPSK Binary phase shift keyed signal
BUD Butterworth distribution
CWD Choi-Williams distribution
FM Frequency modulation
FSK Frequency shift keyed signal
GRD Generalized rectangular distribution
HT Hough transform

MHD Margenau-Hill distribution
MHSD Margenau-Hill-Spectrogram distribution
MMCE Minimum mean cross-entropy
NAF Narrow-band ambiguity function

PMHD Pseudo Margenau-Hill distribution
PWVD Pseudo Wigner-Ville distribution
QPSK Quaternary phase shift keyed signal
RID Reduced interference distribution

STFT Short-time Fourier transform
TFR Time-frequency representation
WAF Wide-band ambiguity function
WVD Wigner-Ville distribution
ZAM Zhao-Atlas-Marks distribution
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• Signal generation files

Choice of the Instantaneous Amplitude
amexpo1s One-sided exponential amplitude modulation
amexpo2s Bilateral exponential amplitude modulation
amgauss Gaussian amplitude modulation
amrect Rectangular amplitude modulation
amtriang Triangular amplitude modulation

Choice of the Instantaneous Frequency
fmconst Signal with constant frequency modulation
fmhyp Signal with hyperbolic frequency modulation
fmlin Signal with linear frequency modulation
fmodany Signal with arbitrary frequency modulation
fmpar Signal with parabolic frequency modulation
fmpower Signal with power-law frequency modulation
fmsin Signal with sinusoidal frequency modulation
gdpower Signal with a power-law group delay

Choice of Particular Signals
altes Altes signal in time domain
anaask Amplitude Shift Keyed (ASK) signal
anabpsk Binary Phase Shift Keyed (BPSK) signal
anafsk Frequency Shift Keyed (FSK) signal
anapulse Analytic projection of unit amplitude impulse signal
anaqpsk Quaternary Phase Shift Keyed (QPSK) signal
anasing Lipschitz singularity
anastep Analytic projection of unit step signal
atoms Linear combination of elementary Gaussian atoms
dopnoise Complex Doppler random signal
doppler Complex Doppler signal
klauder Klauder wavelet in time domain
mexhat Mexican hat wavelet in time domain
window Window generation

Noise Realizations
noisecg Analytic complex gaussian noise
noisecu Analytic complex uniform white noise

Modification
scale Scale a signal using the Mellin transform
sigmerge Add two signals with a given energy ratio in dB

• Processing files
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Time-Domain Processing
ifestar2 Instantaneous frequency estimation using AR2 modelisation.
instfreq Instantaneous frequency estimation
loctime Time localization characteristics

Frequency-Domain Processing
fmt Fast Mellin transform
ifmt Inverse fast Mellin transform
locfreq Frequency localization characteristics
sgrpdlay Group delay estimation

Linear Time-Frequency Processing
tfrgabor Gabor representation
tfrstft Short time Fourier transform

Bilinear Time-Frequency Processing in the Cohen’s Class
tfrbj Born-Jordan distribution
tfrbud Butterworth distribution
tfrcw Choi-Williams distribution
tfrgrd Generalized rectangular distribution
tfrmh Margenau-Hill distribution
tfrmhs Margenau-Hill-Spectrogram distribution
tfrmmce Minimum mean cross-entropy combination of spectrograms
tfrpage Page distribution
tfrpmh Pseudo Margenau-Hill distribution
tfrppage Pseudo Page distribution
tfrpwv Pseudo Wigner-Ville distribution
tfrri Rihaczek distribution
tfrridb Reduced interference distribution (Bessel window)
tfrridbn Reduced interference distribution (binomial window)
tfrridh Reduced interference distribution (Hanning window)
tfrridt Reduced interference distribution (triangular window)
tfrsp Spectrogram distribution
tfrspwv Smoothed Pseudo Wigner-Ville distribution
tfrwv Wigner-Ville distribution
tfrzam Zhao-Atlas-Marks distribution

Bilinear Time-Frequency Processing in the Affine Class
tfrbert Unitary Bertrand distribution
tfrdfla D-Flandrin distribution
tfrscalo Scalogram, for Morlet or Mexican hat wavelet
tfrspaw Smoothed Pseudo Affine Wigner distributions
tfrunter Unterberger distribution, active or passive form
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Reassigned Time-Frequency Processing
tfrrgab Reassigned Gabor spectrogram
tfrrmsc Reassigned Morlet Scalogram time-frequency distribution
tfrrpmh Reassigned Pseudo Margenau-Hill distribution
tfrrppag Reassigned Pseudo Page distribution
tfrrpwv Reassigned Pseudo Wigner-Ville distribution
tfrrsp Reassigned Spectrogram
tfrrspwv Reassigned Smoothed Pseudo WV distribution

Ambiguity Functions
ambifunb Narrow-band ambiguity function
ambifuwb Wide-band ambiguity function

Post-Processing or Help to the Interpretation
friedman Instantaneous frequency density
holder Estimation of the Hlder exponent through an affine TFR
htl Hough transform for detection of lines in images
margtfr Marginals and energy of a time-frequency representation
midpoint Mid-point construction used in the interference diagram
momftfr Frequency moments of a time-frequency representation
momttfr Time moments of a time-frequency representation
plotsid Schematic interference diagram of FM signals
renyi Measure Renyi information
ridges Extraction of ridges from a reassigned TFR
tfrideal Ideal TFR for given frequency laws

Visualization and backup
plotifl Plot normalized instantaneous frequency laws
tfrparam Return the paramaters needed to display (or save) a TFR
tfrqview Quick visualization of a time-frequency representation
tfrsave Save the parameters of a time-frequency representation
tfrview Visualization of time-frequency representations
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Other
disprog Display the progression of a loop
divider Find dividers of an integer, closest from the square root of the integer
dwindow Derive a window
integ Approximate an integral
integ2d Approximate a 2-D integral
izak Inverse Zak transform
kaytth Computation of the Kay-Tretter filter
modulo Congruence of a vector
movcw4at Four atoms rotating, analyzed by the Choi-Williams distribution
movpwdph Influence of a phase-shift on the interferences of the PWVD
movpwjph Influence of a jump of phase on the interferences of the PWVD
movsc2wv Movie illustrating the passage from the scalogram to the WVD
movsp2wv Movie illustrating the passage from the spectrogram to the WVD
movwv2at Oscillating structure of the interferences of the WVD
odd Round towards nearest odd value
zak Zak transform
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altes

Purpose
Altes signal in time domain.

Synopsis
x = altes(N)
x = altes(N,fmin)
x = altes(N,fmin,fmax)
x = altes(N,fmin,fmax,alpha)

Description
altes generates the Altes signal in the time domain.

Name Description Default value
N number of points in time
fmin lower frequency bound (value of the hyperbolic instan-

taneous frequency law at the sampleN), in normalized
frequency

0.05

fmax upper frequency bound (value of the hyperbolic instan-
taneous frequency law at the first sample), in normal-
ized frequency

0.5

alpha attenuation factor of the envelope 300
x time row vector containing the Altes signal samples

Example
x=altes(128,0.1,0.45); plot(x);

plots an Altes signal of 128 points whose normalized frequency goes from 0.45 down to
0.1.

See Also
klauder, anasing, anapulse, anastep, doppler.
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ambifunb

Purpose
Narrow-band ambiguity function.

Synopsis
[naf,tau,xi] = ambifunb(x)
[naf,tau,xi] = ambifunb(x,tau)
[naf,tau,xi] = ambifunb(x,tau,N)
[naf,tau,xi] = ambifunb(x,tau,N,trace)

Description
ambifunb computes the narrow-band ambiguity function of a signal, or the cross-
ambiguity function between two signals. Its definition is given by

Ax(ξ, τ) =
∫ +∞

−∞
x(s+ τ/2) x∗(s− τ/2) e−j2πξs ds.

Name Description Default value
x signal if auto-AF, or [x1,x2] if cross-AF

(length(x)=Nx )
tau vector of lag values (-Nx/2:Nx/2)
N number of frequency bins Nx
trace if non-zero, the progression of the algorithm is shown 0
naf doppler-lag representation, with the doppler bins stored

in the rows and the time-lags stored in the columns
xi vector of doppler values

This representation is computed such as its 2D Fourier transform equals the Wigner-Ville
distribution. When called without output arguments,ambifunb displays the squared
modulus of the ambiguity function by means ofcontour .
The ambiguity function is a measure of the time-frequency correlation of a signalx,
i.e. the degree of similarity betweenx and its translated versions in the time-frequency
plane.
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Examples
Consider a BPSK signal (seeanabpsk ) of 256 points, with a keying period of 8 points,
and analyze it with the narrow-band ambiguity function :

sig=anabpsk(256,8);
ambifunb(sig);

The resulting function presents a high thin peak at the origin of the ambiguity plane,
with small sidelobes around. This means that the inter-correlation between this signal
and a time/frequency-shifted version of it is nearly zero (the ambiguity in the estimation
of its arrival time and mean-frequency is very small).

Here is an other example that checks the correspondance between the WVD and the
narrow-band ambiguity function by means of a 2D Fourier transform :

N=128; sig=fmlin(N); amb=ambifunb(sig);
amb=amb([N/2+1:N 1:N/2],:);
ambi=ifft(amb).’;
tdr=zeros(N); % Time-delay representation
tdr(1:N/2,:)=ambi(N/2:N-1,:);
tdr(N:-1:N/2+2,:)=ambi(N/2-1:-1:1,:);
wvd1=real(fft(tdr));

wvd2=tfrwv(sig);
diff=max(max(abs(wvd1-wvd2)))
diff =

1.5632e-13

See Also
ambifuwb.
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ambifuwb

Purpose
Wide-band ambiguity function.

Synopsis
[waf,tau,theta] = ambifuwb(x)
[waf,tau,theta] = ambifuwb(x,fmin,fmax)
[waf,tau,theta] = ambifuwb(x,fmin,fmax,N)
[waf,tau,theta] = ambifuwb(x,fmin,fmax,N,trace)

Description
ambifuwb calculates the asymetric wide-band ambiguity function, defined as

Ξx(a, τ) =
1√
a

∫ +∞

−∞
x(t) x∗(t/a− τ) dt =

√
a

∫ +∞

−∞
X(ν) X∗(aν) ej2πaτν dν.

Name Description Default value
x signal (in time) to be analyzed (the analytic associated

signal is considered), of lengthNx
fmin,
fmax

respectively lower and upper frequency bounds of the
analyzed signal. When specified, these parameters fix
the equivalent frequency bandwidth (both are expressed
in Hz)

0, 0.5

N number of Mellin points. This number is needed when
fmin andfmax are forced

Nx

trace if non-zero, the progression of the algorithm is shown 0
waf matrix containing the coefficients of the ambiguity

function. X-coordinate corresponds to the dual variable
of scale parameter ; Y-coordinate corresponds to time
delay, dual variable of frequency.

tau X-coordinate corresponding to time delay
theta Y-coordinate corresponding to thelog(a) variable,

wherea is the scale

When called without output arguments,ambifuwb displays the squared modulus of the
ambiguity function by means ofcontour .
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Example
Consider a BPSK signal (seeanabpsk ) of 256 points, with a keying period of 8 points,
and analyze it with the wide-band ambiguity function :

sig=anabpsk(256,8);
ambifunb(sig);

The result, to be compared with the one obtained with the narrow-band ambiguity func-
tion, presents a thin high peak at the origin of the ambiguity plane, but with more impor-
tant sidelobes than with the narrow-band ambiguity function. It means that the narrow-
band assumption is not very well adapted to this signal, and that the ambiguity in the
estimation of its arrival time and mean frequency is not so small.

See Also
ambifunb.
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amexpo1s

Purpose
One-sided exponential amplitude modulation.

Synopsis
y = amexpo1s(N)
y = amexpo1s(N,t0)
y = amexpo1s(N,t0,T)

Description
amexpo1s generates a one-sided exponential amplitude modulation starting at time
t0 , and with a spread proportional toT.
This modulation is scaled such thaty(t0)=1 .

Name Description Default value
N number of points
t0 arrival time of the exponential N/2
T time spreading 2*sqrt(N)
y signal

Examples

z=amexpo1s(160); plot(z);
z=amexpo1s(160,20,40); plot(z);

See Also
amexpo2s, amgauss, amrect, amtriang.
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amexpo2s

Purpose
Bilateral exponential amplitude modulation.

Synopsis
y = amexpo2s(N)
y = amexpo2s(N,t0)
y = amexpo2s(N,t0,T)

Description
amexpo2s generates a bilateral exponential amplitude modulation centered on a time
t0 , and with a spread proportional toT.
This modulation is scaled such thaty(t0)=1 .

Name Description Default value
N number of points
t0 time center N/2
T time spreading 2*sqrt(N)
y signal

Examples

z=amexpo2s(160); plot(z);
z=amexpo2s(160,90,40); plot(z);
z=amexpo2s(160,180,50); plot(z);

See Also
amexpo1s, amgauss, amrect, amtriang.
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amgauss

Purpose
Gaussian amplitude modulation.

Synopsis
y = amgauss(N)
y = amgauss(N,t0)
y = amgauss(N,t0,T)

Description
amgauss generates a gaussian amplitude modulation centered on a timet0 , and
with a spread proportional toT. This modulation is scaled such thaty(t0)=1 and
y(t0+T/2) andy(t0-T/2) are approximately equal to 0.5 :

y(t) = e−π
(

t−t0
T

)2

Name Description Default value
N number of points
t0 time center N/2
T time spreading 2*sqrt(N)
y signal

Examples

z=amgauss(160); plot(z);
z=amgauss(160,90,40); plot(z);
z=amgauss(160,180,50); plot(z);

See Also
amexpo1s, amexpo2s, amrect, amtriang.
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amrect

Purpose
Rectangular amplitude modulation.

Synopsis
y = amrect(N)
y = amrect(N,t0)
y = amrect(N,t0,T)

Description
amrect generates a rectangular amplitude modulation centered on a timet0 , and with
a spread proportional toT. This modulation is scaled such thaty(t0)=1 .

Name Description Default value
N number of points
t0 time center N/2
T time spreading 2*sqrt(N)
y signal

Examples

z=amrect(160); plot(z);
z=amrect(160,90,40); plot(z);
z=amrect(160,180,70); plot(z);

See Also
amexpo1s, amexpo2s, amgauss, amtriang.
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amtriang

Purpose
Triangular amplitude modulation.

Synopsis
y = amtriang(N)
y = amtriang(N,t0)
y = amtriang(N,t0,T)

Description
amtriang generates a triangular amplitude modulation centered on a timet0 , and
with a spread proportional toT. This modulation is scaled such thaty(t0)=1 .

Name Description Default value
N number of points
t0 time center N/2
T time spreading 2*sqrt(N)
y signal

Examples

z=amtriang(160); plot(z);
z=amtriang(160,90,40); plot(z);
z=amtriang(160,180,50); plot(z);

See Also
amexpo1s, amexpo2s, amgauss, amrect.
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anaask

Purpose
Amplitude Shift Keyed (ASK) signal.

Synopsis
[y,am] = anaask(N)
[y,am] = anaask(N,ncomp)
[y,am] = anaask(N,ncomp,f0)

Description
anaask returns a complex amplitude modulated signal of normalized frequencyf0 ,
with a uniformly distributed random amplitude. Such signal is only ’quasi’-analytic.

Name Description Default value
N number of points
ncomp number of points of each component N/5
f0 normalized frequency 0.25
y signal
am resulting amplitude modulation

Example

[signal,am]=anaask(512,64,0.05);
subplot(211); plot(real(signal));
subplot(212); plot(am);

See Also
anafsk, anabpsk, anaqpsk.

Reference
[1] W. GardnerStatistical Spectral Analysis - A Nonprobabilistic TheoryEnglewood
Cliffs, N.J. Prentice Hall, 1987.
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anabpsk

Purpose
Binary Phase Shift Keyed (BPSK) signal.

Synopsis
[y,am] = anabpsk(N)
[y,am] = anabpsk(N,ncomp)
[y,am] = anabpsk(N,ncomp,f0)

Description
anabpsk returns a succession of complex sinusoids ofncomp points each, with a
normalized frequencyf0 and an amplitude equal to -1 or +1, according to a discrete
uniform law. Such signal is only ’quasi’-analytic.

Name Description Default value
N number of points
ncomp number of points of each component N/5
f0 normalized frequency 0.25
y signal
am resulting amplitude modulation

Example

[signal,am]=anabpsk(300,30,0.1);
subplot(211); plot(real(signal));
subplot(212); plot(am);

See Also
anafsk, anaqpsk, anaask.

Reference
[1] W. GardnerIntroduction to Random Processes, with Applications to Signals and
Systems, 2nd Edition, McGraw-Hill, New-York, p. 360 ,1990.
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anafsk

Purpose
Frequency Shift Keyed (FSK) signal.

Synopsis
[y,iflaw] = anafsk(N)
[y,iflaw] = anafsk(N,ncomp)
[y,iflaw] = anafsk(N,ncomp,nbf)

Description
anafsk simulates a phase coherent Frequency Shift Keyed (FSK) signal. This signal
is a succession of complex sinusoids ofncomp points each and with a normalized
frequency uniformly chosen betweennbf distinct values between 0.0 and 0.5. Such
signal is only ’quasi’-analytic.

Name Description Default value
N number of points
ncomp number of points of each component N/5
nbf number of distinct frequencies 4
y signal
iflaw instantaneous frequency law

Example

[signal,ifl]=anafsk(512,64,5);
subplot(211); plot(real(signal));
subplot(212); plot(ifl);

See Also
anabpsk, anaqpsk, anaask.

Reference
[1] W. GardnerIntroduction to Random Processes, with Applications to Signals and
Systems, 2nd Edition, McGraw-Hill, New-York, p. 357 ,1990.
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anapulse

Purpose
Analytic projection of unit amplitude impulse signal.

Synopsis
y = anapulse(N)
y = anapulse(N,ti)

Description
anapulse returns an analytic N-dimensional signal whose real part is a Dirac impulse
at t=ti .

Name Description Default value
N number of points
ti time position of the impulse round(N/2)
y output signal

Example

signal=2.5*anapulse(512,301);
plot(real(signal));

See Also
anastep, anasing, anabpsk, anafsk.
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anaqpsk

Purpose
Quaternary Phase Shift Keyed (QPSK) signal.

Synopsis
[y,pm0] = anaqpsk(N)
[y,pm0] = anaqpsk(N,ncomp)
[y,pm0] = anaqpsk(N,ncomp,f0)

Description
anaqpsk returns a complex phase modulated signal of normalized frequency
f0 , whose phase changes everyncomp point according to a discrete uniform law,
between the values(0, pi/2, pi, 3*pi/2) . Such signal is only ’quasi’-analytic.

Name Description Default value
N number of points
ncomp number of points of each component N/5
f0 normalized frequency 0.25
y signal
pm0 initial phase of each component

Example

[signal,pm0]=anaqpsk(512,64,0.05);
subplot(211); plot(real(signal));
subplot(212); plot(pm0);

See Also
anafsk, anabpsk, anaask.

Reference
[1] W. GardnerIntroduction to Random Processes, with Applications to Signals and
Systems, 2nd Edition, McGraw-Hill, New-York, p. 362 ,1990.
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anasing

Purpose
Lipschitz singularity.

Synopsis
x = anasing(N)
x = anasing(N,t0)
x = anasing(N,t0,H)

Description
anasing generates the N-points Lipschitz singularity centered aroundt0 :
x(t) = |t− t0|H .

Name Description Default value
N number of points in time
t0 time localization of the singularity N/2
H strength of the Lipschitz singularity (positive or nega-

tive)
0

x the time row vector containing the signal samples

Example

x=anasing(128); plot(real(x));

See Also
anastep, anapulse, anabpsk, doppler, holder.

Reference
[1] S. Mallat and W.L. Hwang “Singularity Detection and Processing with Wavelets”
IEEE Trans. on Information Theory, Vol 38, No 2, March 1992, pp. 617-643.
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anastep

Purpose
Analytic projection of unit step signal.

Synopsis
y = anastep(N)
y = anastep(N,ti)

Description
anastep generates the analytic projection of a unit step signal :

y(t) = 0 for t < ti, andy(t) = 1 for t ≥ ti.

Name Description Default value
N number of points
ti starting position of the unit step N/2
y output signal

Examples

signal=anastep(256,128); plot(real(signal));
signal=-2.5*anastep(512,301); plot(real(signal));

See Also
anasing, anafsk, anabpsk, anaqpsk, anaask.
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atoms

Purpose
Linear combination of elementary Gaussian atoms.

Synopsis
[sig,locatoms] = atoms(N)
[sig,locatoms] = atoms(N,coord)

Description
atoms generates a signal consisting in a linear combination of elementary gaussian
atoms. The locations of the time-frequency centers of the different atoms are either
fixed by the input parametercoord or successively defined by clicking with the mouse
(if nargin==1 ), with the help of a menu.

Name Description Default value
N number of points of the signal
coord matrix of time-frequency centers, of the form

[t1,f1,T1,A1;...;tM,fM,TM,AM] . (ti,fi)
are the time-frequency coordinates of atomi , Ti is
its time duration andAi its amplitude. Frequencies
f1..fM should be between 0 and 0.5. Ifnargin==1 ,
the location of the atoms will be defined by clicking
with the mouse

Ti=N/4, Ai=1 .

sig output signal
locatoms matrix of time-frequency coordinates and durations of

the atoms

When the selection of the atoms is finished (after clicking on the ’Stop’ buttom, or after
having specified the coordinates at the command line with the input parametercoord ),
the signal in time together with a schematic representation of the atoms in the time-
frequency plane are displayed on the current figure.

Examples

sig=atoms(128);
sig=atoms(128,[32,0.3,32,1;56,0.15,48,1.22;102,0.41,20,0.7]);

See Also
amgauss, fmconst.
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disprog

Purpose
Display progression of a loop.

Synopsis
disprog(k,N,steps)

Description
disprog displays the progression of a loop. This function is intended to see the
progression of slow algorithms.

Name Description Default value
k loop variable
N final value ofk
steps number of displayed steps

Example

N=16; for k=1:N, disprog(k,N,5); end;

20 40 60 80 100 % complete in 0.0333333 seconds.

Time-Frequency Toolbox Reference Guide, October 26, 2005



divider

Purpose
Find dividers of an integer, closest from the square root of the integer.

Synopsis
[N,M] = divider(N1)

Description
divider find two integersN and M such thatM*N=N1, with M and N as close as
possible fromsqrt(N1) .

Examples

N1=256; [N,M]=divider(N1); [N,M]
ans =

16 16
N1=258; [N,M]=divider(N1); [N,M]
ans =

6 43
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dopnoise

Purpose
Complex doppler random signal.

Synopsis
[y,iflaw] = dopnoise(N,fs,f0,d,v)
[y,iflaw] = dopnoise(N,fs,f0,d,v,t0)
[y,iflaw] = dopnoise(N,fs,f0,d,v,t0,c)

Description
dopnoise generates a complex noisy doppler signal, normalized so as to be of unit
energy.

Name Description Default value
N number of points
fs sampling frequency (in Hz)
f0 target frequency (in Hz)
d distance from the line to the observer (in meters)
v target velocity (in m/s)
t0 time center N/2
c wave velocity (in m/s) 340
y output signal
iflaw model used as instantaneous frequency law

[y,iflaw] = dopnoise(N,fs,f0,d,v,t0,c) returns the signal received by
a fixed observer from a moving target emitting a random broad-band white gaussian
signal whose central frequency isf0 . The target is moving along a straight line, which
gets closer to the observer up to a distanced, and then moves away.t0 is the time center
(i.e. the time at which the target is at the closest distance from the observer), andc is
the wave velocity in the medium.
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Example
Consider such a noisy doppler signal and estimate its instantaneous frequency (see
instfreq ) :

[z,iflaw]=dopnoise(500,200,60,10,70,128);
subplot(211); plot(real(z));
subplot(212); plot(iflaw); hold;
ifl=instfreq(z); plot(ifl,’g’); hold;
sum(abs(z).ˆ2)
ans =

1.0000

The frequency evolution is hardly visible from the time representation, whereas the in-
stantaneous frequency estimation shows it with success. We check that the energy is
equal to 1.

See Also
doppler, noisecg.
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doppler

Purpose
Complex Doppler signal.

Synopsis
[fm,am,iflaw] = doppler(N,fs,f0,d,v)
[fm,am,iflaw] = doppler(N,fs,f0,d,v,t0)
[fm,am,iflaw] = doppler(N,fs,f0,d,v,t0,c)

Description
doppler returns the frequency modulation (fm), the amplitude modulation (am) and
the instantaneous frequency law (iflaw ) of the signal received by a fixed observer
from a moving target emitting a pure frequencyf0 .

Name Description Default value
N number of points
fs sampling frequency (in Hz)
f0 target frequency (in Hz)
d distance from the line to the observer (in meters)
v target velocity (in m/s)
t0 time center N/2
c wave velocity (in m/s) 340
fm output frequency modulation
am output amplitude modulation
iflaw output instantaneous frequency law

The doppler effect characterizes the fact that a signal returned from a moving target is
scaled and delayed compared to the transmitted signal. For narrow-band signals, this
scaling effect can be considered as a frequency shift.

[fm,am,iflaw] = doppler(N,fs,f0,d,v,t0,c) returns the signal re-
ceived by a fixed observer from a moving target emitting a pure frequencyf0 . The
target is moving along a straight line, which gets closer to the observer up to a distance
d, and then moves away.t0 is the time center (i.e. the time at which the target is at the
closest distance from the observer), andc is the wave velocity in the medium.
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Example
Plot the signal and its instantaneous frequency law received by an observer from a car
moving at the speedv = 50m/s, passing at 10 meters from the observer (the radar).
The rotating frequency of the engine isf0 = 65Hz, and the sampling frequency is
fs = 200Hz :

N=512; [fm,am,iflaw]=doppler(N,200,65,10,50);
subplot(211); plot(real(am.*fm));
subplot(212); plot(iflaw);
[ifhat,t]=instfreq(sigmerge(am.*fm,noisecg(N),15),11:502,10);
hold on; plot(t,ifhat,’g’); hold off;

See Also
dopnoise.
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dwindow

Purpose
Derive a window.

Synopsis
dh = dwindow(h)

Description
dwindow derives the windowh.

Example

h=window(200,’hanning’);
subplot(211); plot(h);
subplot(212); plot(dwindow(h));

See Also
window.
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fmconst

Purpose
Signal with constant frequency modulation.

Synopsis
[y,iflaw] = fmconst(N)
[y,iflaw] = fmconst(N,fnorm)
[y,iflaw] = fmconst(N,fnorm,t0)

Description
fmconst generates a frequency modulation with a constant frequencyfnorm and unit
amplitude. The phase of this modulation, determined byt0 , is such thaty(t0)=1 .
The signal is analytic.

Name Description Default value
N number of points
fnorm normalised frequency 0.25
t0 time center N/2
y signal
iflaw instantaneous frequency law

Example
z=amgauss(128,50,30).*fmconst(128,0.05,50);
plot(real(z));

represents the real part of a complex sinusoid of normalized frequency0.05 , centered
at t0=50 , and with a gaussian amplitude modulation maximum att=t0 .

See Also
fmlin, fmsin, fmodany, fmhyp, fmpar, fmpower.
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fmhyp

Purpose
Signal with hyperbolic frequency modulation or group delay law.

Synopsis
[x,iflaw] = fmhyp(N,P1)
[x,iflaw] = fmhyp(N,P1,P2)

Description
fmhyp generates a signal with a hyperbolic frequency modulation

x(t) = exp
(
i2π

(
f0t+

c

log|t|
))

.

Name Description Default value
N number of points in time
P1 if nargin==2, P1 is a vector containing the two co-

efficients[f0 c] . If nargin==3, P1 (asP2) is a
time-frequency point of the form[ti fi] . ti is in
seconds andfi is a normalized frequency (between 0
and 0.5). The coefficientsf0 andc are then deduced
such that the frequency modulation law fits the points
P1 andP2

P2 same asP1 if nargin==3 optional
x time row vector containing the modulated signal sam-

ples
iflaw instantaneous frequency law

Examples

[X,iflaw]=fmhyp(100,[1 .5],[32 0.1]);
subplot(211); plot(real(X));
subplot(212); plot(iflaw);

See Also
fmlin, fmsin, fmpar, fmconst, fmodany, fmpower.
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fmlin

Purpose
Signal with linear frequency modulation.

Synopsis
[y,iflaw] = fmlin(N)
[y,iflaw] = fmlin(N,fnormi)
[y,iflaw] = fmlin(N,fnormi,fnormf)
[y,iflaw] = fmlin(N,fnormi,fnormf,t0)

Description
fmlin generates a linear frequency modulation, going fromfnormi to fnormf . The
phase of this modulation is such thaty(t0)=1 .

Name Description Default value
N number of points
fnormi initial normalized frequency 0.0
fnormf final normalized frequency 0.5
t0 time reference for the phase N/2
y signal
iflaw instantaneous frequency law

Example

z=amgauss(128,50,40).*fmlin(128,0.05,0.3,50);
plot(real(z));

See Also
fmconst, fmsin, fmodany, fmhyp, fmpar, fmpower.
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fmodany

Purpose
Signal with arbitrary frequency modulation.

Synopsis
[y,iflaw] = fmodany(iflaw)
[y,iflaw] = fmodany(iflaw,t0)

Description
fmodany generates a frequency modulated signal whose instantaneous frequency law
is approximately given by the vectoriflaw (the integral is approximated bycumsum).
The phase of this modulation is such thaty(t0)=1 .

Name Description Default value
iflaw vector of the instantaneous frequency law samples
t0 time reference 1
y output signal

Example
[y1,ifl1]=fmlin(100); [y2,ifl2]=fmsin(100);
iflaw=[ifl1;ifl2]; sig=fmodany(iflaw);
subplot(211); plot(real(sig))
subplot(212); plot(iflaw);

This example shows a signal composed of two successive frequency modulations : a
linear FM followed by a sinusoidal FM.

See Also
fmconst, fmlin, fmsin, fmpar, fmhyp, fmpower.
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fmpar

Purpose
Signal with parabolic frequency modulation.

Synopsis
[x,iflaw] = fmpar(N,P1)
[x,iflaw] = fmpar(N,P1,P2,P3)

Description
fmpar generates a signal with parabolic frequency modulation law :

x(t) = exp(j2π(a0t+
a1

2
t2 +

a2

3
t3)).

Name Description Default value
N number of points in time
P1 if nargin=2 , P1 is a vector containing the three coef-

ficients(a0 a1 a2) of the polynomial instantaneous
phase. Ifnargin=4 , P1 (asP2 and P3) is a time-
frequency point of the form(ti fi) . The coeffi-
cients (a0,a1,a2) are then deduced such that the
frequency modulation law fits these three points

P2, P3 same asP1 if nargin=4 . optional
x time row vector containing the modulated signal sam-

ples
iflaw instantaneous frequency law

Examples

[x,iflaw]=fmpar(200,[1 0.4],[100 0.05],[200 0.4]);
subplot(211);plot(real(x));subplot(212);plot(iflaw);
[x,iflaw]=fmpar(100,[0.4 -0.0112 8.6806e-05]);
subplot(211);plot(real(x));subplot(212);plot(iflaw);

See Also
fmconst, fmhyp, fmlin, fmsin, fmodany, fmpower.
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fmpower

Purpose
Signal with power-law frequency modulation.

Synopsis
[x,iflaw] = fmpower(N,k,P1)
[x,iflaw] = fmpower(N,k,P1,P2)

Description
fmpower generates a signal with a power-law frequency modulation :

x(t) = exp(j2π(f0t+
c

1− k
|t|1−k)).

Name Description Default value
N number of points in time
k degree of the power-law (k 6=1)
P1 if nargin==3, P1 is a vector containing the two

coefficients (f0 c) for a power-law instantaneous
frequency (sampling frequency is set to 1). If
nargin=4, P1 (asP2) is a time-frequency point of
the form (ti fi) . ti is in seconds andfi is a
normalized frequency (between 0 and 0.5). The coef-
ficients f0 and c are then deduced such that the fre-
quency modulation law fits the pointsP1 andP2

P2 same asP1 if nargin=4 optional
x time row vector containing the modulated signal sam-

ples
iflaw instantaneous frequency law

Example

[x,iflaw]=fmpower(200,0.5,[1 0.5],[180 0.1]);
subplot(211); plot(real(x));
subplot(212); plot(iflaw);

See Also
gdpower, fmconst, fmlin, fmhyp, fmpar, fmodany, fmsin.
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fmsin

Purpose
Signal with sinusoidal frequency modulation.

Synopsis
[y,iflaw] = fmsin(N)
[y,iflaw] = fmsin(N,fmin)
[y,iflaw] = fmsin(N,fmin,fmax)
[y,iflaw] = fmsin(N,fmin,fmax,period)
[y,iflaw] = fmsin(N,fmin,fmax,period,t0)
[y,iflaw] = fmsin(N,fmin,fmax,period,t0,f0)
[y,iflaw] = fmsin(N,fmin,fmax,period,t0,f0,pm1)

Description
fmsin generates a sinusoidal frequency modulation, whose minimum frequency value
is fmin and maximum isfmax . This sinusoidal modulation is designed such that
the instantaneous frequency at timet0 is equal tof0 , and the ambiguity between
increasing or decreasing frequency is solved bypm1.

Name Description Default value
N number of points
fmin smallest normalized frequency 0.05
fmax highest normalized frequency 0.45
period period of the sinusoidal frequency modulation N
t0 time reference for the phase N/2
f0 normalized frequency at timet0 0.25
pm1 frequency direction att0 (-1 or +1) +1
y signal
iflaw instantaneous frequency law

Example

z=fmsin(140,0.05,0.45,100,20,0.3,-1.0);
plot(real(z));

See Also
fmconst, fmlin, fmodany, fmhyp, fmpar, fmpower.

46 F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine



fmt

Purpose
Fast Mellin Transform.

Synopsis
[mellin,beta] = fmt(x)
[mellin,beta] = fmt(x,fmin,fmax)
[mellin,beta] = fmt(x,fmin,fmax,N)

Description
fmt computes the Fast Mellin Transform of signalx .

Name Description Default value
x signal in time
fmin,
fmax

respectively lower and upper frequency bounds of the
analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspec-
ified, you have to enter them at the command line from
the plot of the spectrum.fmin andfmax must be be-
tween 0 and 0.5

N number of analyzed voices.Nmust be even autoa

mellin theN-points Mellin transform of signalx
beta theN-points Mellin variable

The Mellin transform is invariant in modulus to dilations, and decomposes the signal on
a basis of hyperbolic signals. This transform can be defined as :

Mx(β) =
∫ +∞

0
x(ν) νj2πβ−1 dν

wherex(ν) is the Fourier transform of the analytic signal corresponding tox(t). The
β-parameter can be interpreted as ahyperbolic modulation rate, and has no dimension ;
it is called theMellin’s scale.
In the discrete case, the Mellin transform can be calculated rapidly using a fast Fourier
transform (fft ). The fast Mellin transform is used, for example, in the computation of
the affine time-frequency distributions.

aThis value, determined fromfmin andfmax , is the next-power-of-two of the minimum value checking
the non-overlapping condition in the fast Mellin transform.

Example

sig=altes(128,0.05,0.45);
[mellin,beta]=fmt(sig,0.05,0.5,128);
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plot(beta,real(mellin));

See Also
ifmt, fft, ifft.

References
[1] J. Bertrand, P. Bertrand, J-P. Ovarlez “Discrete Mellin Transform for Signal
Analysis” Proc IEEE-ICASSP, Albuquerque, NM USA, 1990.

[2] J-P. Ovarlez, J. Bertrand, P. Bertrand “Computation of Affine Time-Frequency Rep-
resentations Using the Fast Mellin Transform” Proc IEEE-ICASSP, San Fransisco, CA
USA, 1992.

48 F. Auger, P. Flandrin, P. Gonçalvès, O. Lemoine



friedman

Purpose
Instantaneous frequency density.

Synopsis
tifd = friedman(tfr,hat)
tifd = friedman(tfr,hat,t)
tifd = friedman(tfr,hat,t,method)
tifd = friedman(tfr,hat,t,method,trace)

Description
friedman computes the time-instantaneous frequency density (defined by Friedman
[1]) of a reassigned time-frequency representation.

Name Description Default value
tfr time-frequency representation,(N,M) matrix
hat complex matrix of the reassignment vectors
t time instant(s) (1:M)
method chosen representation ’tfrrsp’
trace if nonzero, the progression of the algorithm is shown 0
tifd time instantaneous-frequency density. When

called without output arguments,friedman runs
tfrqview

Warning : tifd is not an energy distribution, but an estimated probability distribution.

Example
Here is an example of such an estimated probability distribution operated on the reas-
signed pseudo-Wigner-Ville distribution of a linear frequency modulation :

sig=fmlin(128,0.1,0.4);
[tfr,rtfr,hat]=tfrrpwv(sig);
friedman(tfr,hat,1:128,’tfrrpwv’,1);

The result is almost perfectly concentrated on a line in the time-frequency plane.
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See Also
ridges.

Reference
[1] D.H. Friedman, ”Instantaneous Frequency vs Time : An Interpretation of the Phase
Structure of Speech”, Proc. IEEE ICASSP, pp. 29.10.1-4, Tampa, 1985.
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gdpower

Purpose
Signal with a power-law group delay.

Synopsis
[x,gpd,f] = gdpower(N)
[x,gpd,f] = gdpower(N,k)
[x,gpd,f] = gdpower(N,k,c)

Description
gdpower generates a signal with a power-law group delay of the form

tx(f) = t0 + c fk−1.

The output signal is of unit energy.

Name Description Default value
N number of points in time (must be even)
k degree of the power-law 0
c rate-coefficient of the power-law group delay.c must

be non-zero.
1

x time row vector containing the signal samples
gpd output vector containing the group delay samples, of

lengthround(N/2)
f frequency bins

Examples
Consider a hyperbolic group-delay law, and compute the Bertrand distribution of it :

sig=gdpower(128);
tfrbert(sig,1:128,0.01,0.3,128,1);

We note that the perfect localization property of the Bertrand distribution on hyperbolic
group-delay signals is checked in that case.
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Plot the instantaneous frequency law on which the D-Flandrin distribution is perfectly
concentrated :

[sig,gpd,f]=gdpower(128,1/2);
plot(gpd,f);
tfrdfla(sig,1:128,.01,.3,218,1);

See Also
fmpower.
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holder

Purpose
Hlder exponent estimation through an affine TFR.

Synopsis
h = holder(tfr,f)
h = holder(tfr,f,n1)
h = holder(tfr,f,n1,n2)
h = holder(tfr,f,n1,n2,t)

Description
holder estimates the Hlder exponent of a signal through an affine time-frequency
representation of it.

Name Description Default value
tfr affine time-frequency representation
f frequency values of the spectral analysis
n1 indice of the minimum frequency for the linear regres-

sion
1

n2 indice of the maximum frequency for the linear regres-
sion

length(f)

t time vector. If t is omitted, the function returns the
global estimate of the Hlder exponent. Otherwise, it re-
turns the local estimatesh(t) at the instants specified
in t

h output value (ift omitted) or vector (otherwise) con-
taining the Hlder estimate(s)

Example
For instance, we consider a 64-points Lipschitz singularity (seeanasing ) of strength
h=0 , centered att0=32 , analyze it with the scalogram (Morlet wavelet with half-length
= 4), and estimate its Hlder exponent,

sig=anasing(64);
[tfr,t,f]=tfrscalo(sig,1:64,4,0.01,0.5,256,1);
h=holder(tfr,f,1,256,1:64);

the value obtained at timet0 is a good estimation ofh (we obtainh(t0)=-0.0381 ).
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See Also
anastep, anapulse, anabpsk, doppler.

Reference
[1] S. Jaffard “Exposants de Hlder en des points donns et coefficients d’ondelettes” C.R.
de l’Acadmie des Sciences, Paris, t. 308, Srie I, p. 79-81, 1989.

[2] P. Gonalvs, P. Flandrin “Scaling Exponents Estimation From Time-Scale Energy
Distributions” IEEE ICASSP-92, pp. V.157 - V.160, San Fransisco 1992.
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htl

Purpose
Hough transform for detection of lines in images.

Synopsis
[HT,rho,theta] = htl(IM).
[HT,rho,theta] = htl(IM,M).
[HT,rho,theta] = htl(IM,M,N).
[HT,rho,theta] = htl(IM,M,N,trace).

Description
From an imageIM , computes the integration of the values of the image over all the
lines. The lines are parametrized using polar coordinates. The origin of the coordinates
is fixed at the center of the image, andtheta is the angle between thevertical
axis and the perpendicular (to the line) passing through the origin. Only the values
of IM exceeding 5 % of the maximum are taken into account (to speed up the algorithm).

Name Description Default value
IM image to be analyzed (size(Xmax,Ymax) )
M desired number of samples along the radial axis Xmax
N desired number of samples along the azimutal (angle)

axis
Ymax

trace if nonzero, the progression of the algorithm is shown 0
HT output matrix (MxNmatrix)
rho sequence of samples along the radial axis
theta sequence of samples along the azimutal axis

When called without output arguments,htl displaysHTusingmesh.

Example
The Wigner-Ville distribution of a linear frequency modulation is almost perfectly con-
centrated (in the discrete case) on a straight line in the time-frequency plane. Thus,
applying the Hough transform on this image will produce a representation with a peak,
whose coordinates give estimates of the linear frequency modulation parameters (initial
frequency and sweep rate) :

N=64; t=(1:N); y=fmlin(N,0.1,0.3);
IM=tfrwv(y,t,N); imagesc(IM); pause(1);
htl(IM,N,N,1);
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Reference
[1] H. Matre “Un Panorama de la Transformation de Hough”, Traitement du Signal, Vol
2, No 4, pp. 305-317, 1985.
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ifestar2

Purpose
Instantaneous frequency estimation using AR2 modelisation.

Synopsis
[fnorm,t2,ratio] = ifestar2(x)
[fnorm,t2,ratio] = ifestar2(x,t)

Description
ifestar2 computes an estimation of the instantaneous frequency of the real signalx
at time instant(s)t using an auto-regressive model of order 2. The resultfnorm lies
between 0.0 and 0.5. This estimate is based only on the 4 last signal points, and has
therefore an approximate delay of 2.5 points.

Name Description Default value
x real signal to be analyzed
t time instants (must be greater than 4) (4:length(x))
fnorm output (normalized) instantaneous frequency
t2 time instants coresponding tofnorm . Since the algo-

rithm do not systematically give a value,t2 is different
from t in general

ratio proportion of instants where the algorithm yields an es-
timation

This estimator is the causal version of the estimator called ”4 points Prony estimator” in
article [1].

Example
Here is a comparison between the instantaneous frequency estimated byifestar2 and
the exact instantaneous frequency law, obtained on a sinusoidal frequency modulation :

[x,if]=fmsin(100,0.1,0.4); x=real(x);
[if2,t]=ifestar2(x);
plot(t,if(t),t,if2);

The estimation follows quite correctly the right law, but with a small bias and with some
weak oscillations.
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See Also
instfreq, kaytth, sgrpdlay.

Reference
[1] Prony ”Instantaneous frequency estimation using linear prediction with comparisons
to the dESAs”, IEEE Signal Processing Letters, Vol 3, No 2, p 54-56, February 1996.
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ifmt

Purpose
Inverse fast Mellin transform.

Synopsis
x = ifmt(mellin,beta)
x = ifmt(mellin,beta,M)

Description
ifmt computes the inverse fast Mellin transform ofmellin .
Warning: the inverse of the Mellin transform is correct only if the Mellin transform has
been computed fromfmin to 0.5 Hz, and if the original signal is analytic.

Name Description Default value
mellin Mellin transform to be inverted.mellin must have

been obtained fromfmt with frequency running from
fmin to 0.5 Hz

beta Mellin variable issued fromfmt
M number of points of the inverse Mellin transform length(mellin)
x inverse Mellin transform withMpoints in time

Example
To check the perfect reconstruction property of the inverse Mellin transform, we consider
an analytic signal, compute its fast Mellin transform with an upper frequency bound of
0.5, and apply on the output vector theifmt algorithm :

sig=atoms(128,[64,0.25,32,1]); clf;
[mellin,beta]=fmt(sig,0.08,0.5,128);
x=ifmt(mellin,beta,128); plot(abs(x-sig));

We can observe the almost perfect equality betweenx andsig .

See Also
fmt, fft, ifft.
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instfreq

Purpose
Instantaneous frequency estimation.

Synopsis
[fnormhat,t] = instfreq(x)
[fnormhat,t] = instfreq(x,t)
[fnormhat,t] = instfreq(x,t,l)
[fnormhat,t] = instfreq(x,t,l,trace)

Description
instfreq computes the estimation of the instantaneous frequency of the analytic sig-
nal x at time instant(s)t , using the trapezoidal integration rule. The resultfnormhat
lies between 0.0 and 0.5.

Name Description Default value
x analytic signal to be analyzed
t time instants (2:length(x)-1)
l if l=1 , computes the estimation of the (normal-

ized) instantaneous frequency ofx , defined as
angle(x(t+1)*conj(x(t-1)) ; if l>1 , com-
putes a Maximum Likelihood estimation of the instan-
taneous frequency of the deterministic part of the signal
blurried in a white gaussian noise.l must be an integer

1

trace if nonzero, the progression of the algorithm is shown 0
fnormhat output (normalized) instantaneous frequency

Examples
Consider a linear frequency modulation and estimate its instantaneous frequency law
with instfreq :

[x,ifl]=fmlin(70,0.05,0.35,25);
[instf,t]=instfreq(x);
plotifl(t,[ifl(t) instf]);
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Now consider a noisy sinusoidal frequency modulation with a signal to noise ratio of 10
dB :

N=64; SNR=10.0; L=4; t=L+1:N-L;
x=fmsin(N,0.05,0.35,40);
sig=sigmerge(x,hilbert(randn(N,1)),SNR);
plotifl(t,[instfreq(sig,t,L),instfreq(x,t)]);

See Also
ifestar2, kaytth, sgrpdlay.

Reference
[1] I. Vincent, F. Auger, C. Doncarli “A Comparative Study Between Two Instantaneous
Frequency Estimators”, Proc Eusipco-94, Vol. 3, pp. 1429-1432, 1994.

[2] P. Djuric, S. Kay “Parameter Estimation of Chirp Signals” IEEE Trans. on Acoust.
Speech and Sig. Proc., Vol. 38, No. 12, 1990.

[3] S.M. Tretter “A Fast and Accurate Frequency Estimator”, IEEE Trans. on ASSP, Vol.
37, No. 12, pp. 1987-1990, 1989.
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integ

Purpose
Approximate integral.

Synopsis
som = integ(y)
som = integ(y,x)

Description
integ approximates the integral of vectory according tox .

Name Description Default value
y N-row-vector (or (M,N) -matrix) to be integrated

(along each row).
x N-row-vector containing the integration path ofy (1:N)
som value (or(M,1) vector) of the integral

Example

y = altes(256,0.1,0.45,10000)’;
x = (0:255); som = integ(y,x)
som =

2.0086e-05

See Also
integ2d.
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integ2d

Purpose
Approximate 2-D integral.

Synopsis
som = integ2d(MAT)
som = integ2d(MAT,x)
som = integ2d(MAT,x,y)

Description
integ2d approximates the 2-D integral of matrixMATaccording to abscissax and
ordinatey .

Name Description Default value
MAT (M,N) matrix to be integrated
x N-row-vector indicating the abscissa integration path (1:N)
y M-column-vector indicating the ordinate integration

path
(1:M)

som result of integration

Example
Consider the scalogram of a sinusoidal frequency modulation of 128 points, and compute
the integral over the time-scale plane of the scalogram :

S = fmsin(128,0.2,0.3);
[TFR,t,f] = tfrscalo(S,1:128,8,0.1,0.4,128,1);
Etfr = integ2d(TFR,t,f)
Etfr =

128.0000

We find forEtfr the value of the signal energy, which is the expected value since the
scalogram preserves energy.

See Also
integ.
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izak

Purpose
Inverse Zak transform.

Synopsis
sig = izak(DZT)

Description
izak computes the inverse Zak transform of matrixDZT.

Name Description Default value
DZT (N,M) matrix of Zak samples (obtained withzak )
sig output signal(M*N,1) containing the inverse Zak

transform

Example
If we compute the discrete Zak transform of a signal and apply on the output matrix the
inverse Zak transform, we should obtain again the original signal :

sig=fmlin(250); DZT=zak(sig); sigr=izak(DZT);
plot(real(sigr-sig));

See Also
zak, tfrgabor.
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kaytth

Purpose
Kay-Tretter filter computation.

Synopsis
h = kaytth(N);

Description
kaytth computes the Kay-Tretter filter.

Name Description Default value
N length of the filter
h impulse response of the filter

This filter is used in the computation ofinstfreq .

See Also
instfreq.

Reference
[1] P. Djuric and S. Kay ”Parameter Estimation of Chirp Signals” IEEE Trans. on
Acoust. Speech and Sig. Proc., Vol 38, No 12, 1990.

[2] S.M. Tretter “A Fast and Accurate Frequency Estimator”, IEEE Trans. on ASSP, Vol.
37, No. 12, pp. 1987-1990, 1989.
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klauder

Purpose
Klauder wavelet in time domain.

Synopsis
x = klauder(N)
x = klauder(N,lambda)
x = klauder(N,lambda,f0)

Description
klauder generates the Klauder wavelet in the time domain :

K(f) = e−2πλff2πλf0−1/2.

Name Description Default value
N number of points in time
lambda attenuation factor or the envelope 10
f0 central frequency of the wavelet 0.2
x time row vector containing the klauder samples

Example

x=klauder(150,50,0.1);
plot(x);

See Also
altes, anasing, doppler, anafsk, anastep.
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locfreq

Purpose
Frequency localization characteristics.

Synopsis
[fm,B] = locfreq(x)

Description
locfreq computes the frequency localization characteristics of signalx . The defini-
tion used for the averaged frequency and the frequency spreading are the following :

fm =
1
Ex

∫ +∞

−∞
ν |X(ν)|2 dν

B = 2

√
π

Ex

∫ +∞

−∞
(ν − fm)2 |X(ν)|2 dν

whereEx is the energy of the signal andX(ν) the Fourier transform ofx(t). With
this definition (and the one used inloctime ), the Heisenberg-Gabor inequality writes
B T ≥ 1.

Name Description Default value
x signal
fm averaged normalized frequency center
B frequency spreading

Example

z=amgauss(160,80,50).*fmconst(160,0.2);
[fm,B]=locfreq(z); [fm,B]
ans =

0.2000 0.0200

See Also
loctime.
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loctime

Purpose
Time localization characteristics.

Synopsis
[tm,T] = loctime(x)

Description
loctime computes the time localization characteristics of signalx . The definition used
for the averaged time and the time spreading are the following :

tm =
1
Ex

∫ +∞

−∞
t |x(t)|2 dt

T = 2

√
π

Ex

∫ +∞

−∞
(t− tm)2 |x(t)|2 dt

whereEx is the energy of the signal. With this definition (and the one used in
locfreq ), the Heisenberg-Gabor inequality writesB T ≥ 1.

Name Description Default value
x signal
tm averaged time center
T time spreading

Examples
Here is an example of signal which corresponds to the lower bound of the Heisenberg-
Gabor inequality.

z=amgauss(160,80,50);
[tm,T]=loctime(z);
[fm,B]=locfreq(z);
[tm,T,fm,B,T*B]
ans =

80.0000 50.0000 0.0000 0.0200 1

See Also
locfreq.
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margtfr

Purpose
Marginals and energy of a time-frequency representation.

Synopsis
[margt,margf,E] = margtfr(tfr)
[margt,margf,E] = margtfr(tfr,t)
[margt,margf,E] = margtfr(tfr,t,f)

Description
margtfr calculates the time and frequency marginals and the energy of a time-
frequency representation. The definitions used for the computation are the following :

mf (t) =
∫ +∞

−∞
tfr(t, f) df time marginal

mt(f) =
∫ +∞

−∞
tfr(t, f) dt frequency marginal

E =
∫ +∞

−∞

∫ +∞

−∞
tfr(t, f) df dt energy

Name Description Default value
tfr time-frequency representation(M,N)
t vector containing the time samples in sec. (1:N)
f vector containing the frequency samples in Hz, not nec-

essary uniformly sampled
(1:M)

margt time marginal
margf frequency marginal
E energy oftfr

Example

S=amgauss(128).*fmlin(128);
[tfr,t,f]=tfrscalo(S,1:128,8,.05,.45,128,1);
[margt,margf,E] = margtfr(tfr);
subplot(211); plot(t,margt);
subplot(212); plot(f,margf);

See Also
momttfr, momftfr.
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mexhat

Purpose
Mexican hat wavelet in time domain.

Synopsis
h = mexhat
h = mexhat(nu)

Description
mexhat returns the mexican hat wavelet, with central frequencynu (nu is a normalized
frequency). Its expression writes

h(t) = ν

√
π

2
(1− 2(πνt)2) exp[−(πν t)2].

Name Description Default value
nu any real between 0 and 0.5 0.05
h time vector containing the mexhat samples

length(h)=2*ceil(1.5/nu)+1

Example

plot(mexhat);

See Also
klauder.
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midscomp

Purpose
Mid-point construction used in the interference diagram.

Synopsis
[ti,fi] = midpoint(t1,f1,t2,f2,K)

Description
midscomp gives the coordinates in the time-frequency plane of the interference-term
corresponding to the points(t1,f1) and (t2,f2) , for a distribution in the affine
class perfectly localized on power-law group-delays of the formtx(ν) = t0 + c νK−1.
This function is mainly called byplotsid .

Name Description
t1 time-coordinate of the first point
f1 frequency-coordinate of the first point (> 0)
t2 time-coordinate of the second point
f2 frequency-coordinate of the second point (> 0)
K power of the group-delay law. Example of distributions satisfying this

interference construction :
K = 2 : Wigner-Ville distribution
K = 1/2 : D-Flandrin distribution
K = 0 : Bertrand (unitary) distribution
K = -1 : Unterberger (active) distribution
K = Inf : Margenau-Hill-Rihaczek distribution

ti time-coordinate (abscissa) of the interference-point
fi frequency-coordinate (ordinate) of the interference-point

Example
Here is the locus of the interference terms between two points, forK going from -15 to
15 :

t1=10; f1=0.45; t2=90; f2=0.05; hold on
for K=-15:15,

[ti(2*K+31),fi(2*K+31)]=midscomp(t1,f1,t2,f2,K);
end

plot(ti,fi,’g*’); plot(t1,f1,’go’); plot(t2,f2,’go’);
line([t1,t2],[f1,f2]); hold off
xlabel(’Time’); ylabel(’Normalized frequency’);

See Also
plotsid.
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modulo

Purpose
Congruence of a vector.

Synopsis
y = modulo(x,N)

Description
modulo gives the congruence of each element of the vectorx moduloN. These values
are strictly positive and lower equal thanN.

Name Description Default value
x vector of real values, positive or negative
N congruence number (not necessarily an integer)
y output vector of real values,>0 and≤N

Example

x=[1.3 -2.13 9.2 0 -13 2];
modulo(x,2)
ans =

1.3000 1.8700 1.2000 2.0000 1.0000 2.0000

See Also
rem.
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momftfr

Purpose
Frequency moments (order 1 and 2) of a time-frequency representation.

Synopsis
[tm,T2] = momftfr(tfr)
[tm,T2] = momftfr(tfr,tmin)
[tm,T2] = momftfr(tfr,tmin,tmax)
[tm,T2] = momftfr(tfr,tmin,tmax,time)

Description
momftfr computes the frequeny moments of order 1 and 2 of a time-frequency repre-
sentation :

tm(f) =
1
E

∫ +∞

−∞
t tfr(t, f) dt ; T 2(f) =

1
E

∫ +∞

−∞
t2 tfr(t, f) dt− tm(f)2.

Name Description Default value
tfr time-frequency representation (size(N,M) ).
tmin smallest column element oftfr taken into account 1
tmax highest column element oftfr taken into account M
time true time instants (1:M)
tm averaged time (first order moment)
T2 squared time duration (second order moment)

Example
sig=fmlin(200,0.1,0.4); [tfr,t,f]=tfrwv(sig);
[tm,T2]=momftfr(tfr);
subplot(211); plot(f,tm); subplot(212); plot(f,T2);

The first order moment represents an estimation of the group delay, and the second order
moment the variance of this estimator. We can see that the estimation is better around
the time center position than at the edges of the observation interval.

See Also
momttfr, margtfr.

Time-Frequency Toolbox Reference Guide, October 26, 2005



momttfr

Purpose
Time moments of a time-frequency representation.

Synopsis
[fm,B2] = momttfr(tfr,method)
[fm,B2] = momttfr(tfr,method,fbmin)
[fm,B2] = momttfr(tfr,method,fbmin,fbmax)
[fm,B2] = momttfr(tfr,method,fbmin,fbmax,freqs)

Description
momttfr computes the time moments of order 1 and 2 of a time-frequency representa-
tion :

fm(t) =
1
E

∫ +∞

−∞
f tfr(t, f) df ; B2(t) =

1
E

∫ +∞

−∞
f2 tfr(t, f) df − fm(t)2.

Name Description Default value
tfr time-frequency representation (size(N,M) )
method chosen representation (name of the corresponding M-

file).
fbmin smallest frequency bin 1
fbmax highest frequency bin M
freqs true frequency of each frequency bin.freqs must be

of lengthfbmax-fbmin+1
autoa

fm averaged frequency (first order moment)
B2 squared frequency bandwidth (second order moment)

afreqs goes from 0 to 0.5 or from -0.5 to 0.5 depending onmethod .

Examples
sig=fmlin(200,0.1,0.4); tfr=tfrwv(sig);
[fm,B2]=momttfr(tfr,’tfrwv’);
subplot(211); plot(fm); subplot(212); plot(B2);
freqs=linspace(0,99/200,100); tfr=tfrsp(sig);
[fm,B2]=momttfr(tfr,’tfrsp’,1,100,freqs);
subplot(211); plot(fm); subplot(212); plot(B2);
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The first order moment represents an estimation of the instantaneous frequency, and the
second order moment the variance of this estimator. We can see that the estimation
is better around the time center position than at the edges of the observation interval.
Besides, the second estimator (using the spectrogram) has a lower variance than the first
one (using the Wigner-Ville distribution), but presents an important bias.

See Also
momftfr, margtfr.
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movcw4at

Purpose
Four atoms rotating, analyzed by the Choi-Williams distribution.

Synopsis
M = movcw4at(N)
M = movcw4at(N,Np)

Description
movcw4at generates the movie frames illustrating the influence of an overlapping in
time and/or frequency of different components of a signal on the interferences of the
Choi-Williams distribution between these components.

Name Description Default value
N number of points of the analyzed signal
Np number of snapshots 7
M matrix of movie frames

Example

M=movcw4at(128,15);
movie(M,10);

See Also
movpwjph, movpwdph, movsc2wv, movsp2wv, movwv2at.
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movpwdph

Purpose
Influence of a phase-shift on the interferences of the PWVD.

Synopsis
M = movpwdph(N)
M = movpwdph(N,Np)
M = movpwdph(N,Np,typesig)

Description
movpwdph generates the movie frames illustrating the influence of a phase-shift
between two signals on the interference terms of the pseudo Wigner-Ville distribution.

Name Description Default value
N number of points for the signal
Np number of snapshots 8
typesig type of signal ’C’

’C’ : constant frequency modulation
’L’ : linear frequency modulation
’S’ : sinusoidal frequency modulation

M matrix of movie frames

Example

M=movpwdph(128,8,’S’);
movie(M,10);

See Also
movpwjph, movcw4at, movsc2wv, movsp2wv, movwv2at.
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movpwjph

Purpose
Influence of a jump of phase on the interferences of the PWVD.

Synopsis
M = movpwjph(N)
M = movpwjph(N,Np)
M = movpwjph(N,Np,typesig)

Description
movpwjph generates the movie frames illustrating the influence of a jump of phase in
different frequency modulations on the interference terms of the pseudo Wigner-Ville
distribution.

Name Description Default value
N number of points for the signal
Np number of snapshots 8
typesig type of signal ’C’

’C’ : constant frequency modulation
’L’ : linear frequency modulation
’S’ : sinusoidal frequency modulation

M matrix of movie frames

Example

M=movpwjph(128,8,’S’);
movie(M,10);

See Also
movcw4at, movpwdph, movsc2wv, movsp2wv, movwv2at.
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movsc2wv

Purpose
Movie illustrating the passage from the scalogram to the WVD.

Synopsis
M = movsc2wv(N)
M = movsc2wv(N,Np)

Description
movsc2wv generates the movie frames illustrating the passage from the scalogram to
the WVD using the affine smoothed pseudo-WVD with different smoothing gaussian
windows.

Name Description Default value
N number of points of the analyzed signal
Np number of snapshots 8
M matrix of movie frames

Example

M=movsc2wv(64,8);
movie(M,10);

See Also
movpwjph, movpwdph, movcw4at, movsp2wv, movwv2at.
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movsp2wv

Purpose
Movie illustrating the passage from the spectrogram to the WVD.

Synopsis
M = movsp2wv(N)
M = movsp2wv(N,Np)

Description
movsp2wv generates the movie frames illustrating the passage from the spectrogram to
the WVD using the smoothed pseudo-WVD with different smoothing gaussian windows.

Name Description Default value
N number of points of the analyzed signal
Np number of snapshots 8
M matrix of movie frames

Example

M=movsp2wv(128,15);
movie(M,10);

See Also
movpwjph, movpwdph, movsc2wv, movcw4at, movwv2at.
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movwv2at

Purpose
Oscillating structure of the interferences of the WVD.

Synopsis
M = movwv2at(N)
M = movwv2at(N,Np)

Description
movwv2at generates the movie frames illustrating the influence of the distance
between two components on the oscillating structure of the interferences of the WVD.

Name Description Default value
N number of points of the analyzed signal
Np number of snapshots 9
M matrix of movie frames

Example

M=movwv2at(128,15);
movie(M,10);

See Also
movpwjph, movpwdph, movsc2wv, movsp2wv, movcw4at.
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noisecg

Purpose
Analytic complex gaussian noise (white or colored).

Synopsis
noise = noisecg(N)
noise = noisecg(N,a1)
noise = noisecg(N,a1,a2)

Description
noisecg computes an analytic complex gaussian noise of lengthN with mean 0 and
variance 1.0.

Name Description Default value
N length of the output vector
a1 first coefficient of the auto-regressive filter used to color

the noise
0

a2 second coefficient of the auto-regressive filter used to
color the noise

0

noise output vector containing the noise samples

noise=noisecg(N) yields a complex white gaussian noise.

noise=noisecg(N,a1) yields a complex colored gaussian noise obtained by filter-
ing a white gaussian noise through a first order filter whose impulse response is

H(z) =

√
1− a2

1

1− a1 z−1
.

noise=noisecg(N,a1,a2) yields a complex colored gaussian noise obtained by
filtering a white gaussian noise through a second order filter whose impulse response is

H(z) =

√
1− a2

1 − a2
2

1− a1 z−1 − a2 z−2
.
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Example

N=500; noise=noisecg(N);
[abs(mean(noise)),std(noise).ˆ2]
ans =

0.0152 0.9680

subplot(211); plot(real(noise)); axis([1 N -3 3]);
subplot(212); f=linspace(-0.5,0.5,N);
plot(f,abs(fftshift(fft(noise))).ˆ2);

See Also
rand, randn, noisecu.
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noisecu

Purpose
Analytic complex uniform white noise.

Synopsis
noise = noisecu(N)

Description
noisecu computes an analytic complex white uniform noise of lengthN with mean 0
and variance 1.0.

Example

N=512; noise=noisecu(N);
[abs(mean(noise)),std(noise).ˆ2]
ans =

0.0099 1.0000

subplot(211); plot(real(noise)); axis([1 N -1.5 1.5]);
subplot(212); f=linspace(-0.5,0.5,N);
plot(f,abs(fftshift(fft(noise))).ˆ2);

See Also
rand, randn, noisecg.
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odd

Purpose
Round towards nearest odd value.

Synopsis
y = odd(x)

Description
odd rounds each element ofx towards the nearest odd integer value. If an element ofx
is even,odd adds +1 to this value.x can be a scalar, a vector or a matrix.

Name Description Default value
x scalar, vector or matrix to be rounded
y output scalar, vector or matrix containing only odd val-

ues

Example

x=[1.3 2.08 -3.4 90.43];
y=odd(x)
ans =

1 3 -3 91

See Also
round, ceil, fix, floor.
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plotifl

Purpose
Plot normalized instantaneous frequency laws.

Synopsis
plotifl(t,iflaws)

Description
plotifl plot the normalized instantaneous frequency laws of each signal component.

Name Description Default value
t time instants (size(M,1) )
iflaws (M,P) -matrix where each column corresponds to

the instantaneous frequency law of an(M,1) -signal.
TheseP signals do not need to be present at the same
time instants. The values ofiflaws must be between
-0.5 and 0.5.

Example

N=140; t=0:N-1; [x1,if1]=fmlin(N,0.05,0.3);
[x2,if2]=fmsin(70,0.35,0.45,60);
if2=[zeros(35,1)*NaN;if2;zeros(35,1)*NaN];
plotifl(t,[if1 if2]);

See Also
plotsid, tfrqview, tfrview.
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plotsid

Purpose
Schematic interference diagram of FM signals.

Synopsis
plotsid(t,iflaws)
plotsid(t,iflaws,K)

Description
plotsid plots the schematic interference diagram of any distribution in the affine
class which is perfectly localized for signals with a power-law group-delay of the form
tx(ν) = t0 + c νK−1. This diagram is computed for any (analytic) FM signal.

Name Description Default value
t time instants
iflaws matrix of instantaneous frequencies, with as many

columns as signal components
K distribution parameter 2

K = 2 : Wigner-Ville distribution
K = 1/2 : D-Flandrin distribution
K = 0 : Bertrand (unitary) distribution
K = -1 : Unterberger (active) distribution
K = inf : Margenhau-Hill-Rihaczek dist.

Example
Here is the interference diagram corresponding to the Bertrand distribution, for a signal
composed of two components : a linear and a constant frequency modulation :

Nt=90; [y,iflaw]=fmlin(Nt,0.05,0.25);
[y2,iflaw2]=fmconst(50,0.4);
iflaw(:,2)=[NaN*ones(10,1);iflaw2;NaN*ones(Nt-60,1)];
plotsid(1:Nt,iflaw,0);

See Also
plotifl, midpoint, tfrqview, tfrview.
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renyi

Purpose
Measure Renyi information.

Synopsis
R = renyi(tfr)
R = renyi(tfr,t)
R = renyi(tfr,t,f)
R = renyi(tfr,t,f,alpha)

Description
renyi measures the Renyi information relative to a 2-D density functiontfr (which
can be eventually a time-frequency representation). Renyi information of orderα is
defined as :

Rα
x =

1
1− α

log2

{∫ +∞

−∞

∫ +∞

−∞
tfrα

x(t, ν) dt dν
}

The result produced by this measure is expressed inbits : if one elementary signal
yields zero bit of information (20), then two well separated elementary signals will yield
one bit of information (21), four well separated elementary signals will yield two bits of
information (22), and so on.

Name Description Default value
tfr (M,N) 2-D density function (or mass function). Even-

tually tfr can be a time-frequency representation, in
which case its first row must correspond to the lower
frequencies

t abscissa vector parametrizing thetfr matrix. t can be
a non-uniform sampled vector (eventually a time vec-
tor)

(1:N)

f ordinate vector parametrizing thetfr matrix. f can be
a non-uniform sampled vector (eventually a frequency
vector)

(1:M)

alpha rank of the Renyi measure 3
R the alpha-rank Renyi measure (in bits iftfr is a time-

frequency matrix).
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Examples
s=atoms(64,[32,.25,16,1]); [tfr,t,f]=tfrsp(s);
R1=renyi(tfr,t,f,3)
ans =

0.9861

s=atoms(64,[16,.2,16,1;48,.3,16,1]); [tfr,t,f]=tfrsp(s);
R2=renyi(tfr,t,f,3)
ans =

1.9890

We can see that ifR is set to 0 for one elementary atom by subtractingR1, we obtain a
result close to 1 bit for two atoms (R2-R1=1.0029).

Reference
[1] W. Williams, M. Brown, A. Hero III, “Uncertainty, information and time-frequency
distributions”, SPIE Advanced Signal Processing Algorithms, Architectures and Imple-
mentations II, Vol. 1566, pp. 144-156, 1991.
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ridges

Purpose
Extraction of ridges from a reassigned TF representation.

Synopsis
[ptt,ptf] = ridges(tfr,hat,t,method)
[ptt,ptf] = ridges(tfr,hat,t,method,trace)

Description
ridges extracts the ridges of a time-frequency distribution. These ridges are some
particular sets of curves deduced from the stationary points of their reassignment
operators.

Name Description Default value
tfr time-frequency representation
hat complex matrix of the reassignment vectors
t the time instant(s)
method the chosen representation
trace if nonzero, the progression of the algorithm is shown 0
ptt,
ptf

two vectors for the time and frequency coordinates of
the stationary points of the reassignment. Therefore,
plot(ptt,ptf,’.’) shows the squeleton of the
representation

When called without output arguments,ridges runsplot(ptt,ptf,’.’) .

Example
Consider the ridges of the smoothed-pseudo WVD of a linear chirp signal :

sig=fmlin(128,0.1,0.4); t=1:2:127;
[tfr,rtfr,hat]=tfrrspwv(sig,t,128);
ridges(tfr,hat,t,’tfrrspwv’,1);

The points obtained are almost perfectly localized on the instantaneous frequency law of
the signal.

See Also
friedman.
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scale

Purpose
Scale a signal using the Mellin transform.

Synopsis
S = scale(x,a,fmin,fmax,N)

Description
scale computes thea-scaled version of signalx : xa(t) = a−

1
2 x( t

a) using the
Mellin transform.

Name Description Default value
x signal in time to be scaled (Nx=length(x) )
a scale factor.a < 1 corresponds to a compression in the

time domain anda > 1 to a dilation.a can be a vector.
2

fmin,
fmax

respectively lower and upper frequency bounds of the
analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspec-
ified, you have to enter them at the command line from
the plot of the spectrum.fmin andfmax must be>0
and≤0.5

N number of analyzed voices autoa

S the a-scaled version of signalx . Length ofS can be
larger than length ofx if a > 1. If a is a vector of
lengthL, S is a matrix withL columns.S has the same
energy asx .

aThis value, determined fromfmin andfmax , is the next-power-of-two of the minimum value checking
the non-overlapping condition in the fast Mellin transform.

Example
Dilate a Klauder-wavelet by a factor of 2 :

sig=klauder(100); S=scale(sig,2,.05,.45,100);
subplot(211); plot(sig);
subplot(212); plot(real(S(51:150)));

See Also
fmt.
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sgrpdlay

Purpose
Group delay estimation of a signal.

Synopsis
[gd,fnorm] = sgrpdlay(x)
[gd,fnorm] = sgrpdlay(x,fnorm)

Description
sgrpdlay estimates the group delay of a signalx at the normalized frequency(ies)
fnorm .

Name Description Default value
x signal in the time-domain (N=length(x) )
fnorm normalized frequency linspace(-.5,.5,N)
gd output vector containing the group delay sam-

ples. When GD equals zero, it means that the
estimation of the group delay for this frequency
was outside the interval[1 xrow] , and there-
fore meaningless.

Example
Let us compare the estimated group-delay and instantaneous frequency of a linear chirp
signal :

N=128; x=fmlin(N,0.1,0.4);
fnorm=0.1:0.04:0.38; gd=sgrpdlay(x,fnorm);
t=2:N-1; instf=instfreq(x,t);
plot(t,instf,gd,fnorm); axis([1 N 0 0.5]);

The two curves are almost superposed, which is normal for a large time-bandwidth prod-
uct signal.

See Also
instfreq.
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sigmerge

Purpose
Add two signals with a given energy ratio in dB.

Synopsis
x = xmerge(x1,x2)
x = sigmerge(x1,x2,ratio)

Description
sigmerge adds two signals so that a given energy ratio expressed in deciBels is
satisfied :

x=x1+h*x2,
such that

20*log(norm(x1)/norm(h*x2))=ratio.

Name Description Default value
x1, x2 input signals
ratio energy ratio in deciBels 0 dB
x output signal

Example

x=fmlin(64,0.01,0.05,1); noise=hilbert(randn(64,1));
SNR=15; xn=sigmerge(x,noise,SNR);
Ex=mean(abs(x).ˆ2); Enoise=mean(abs(xn-x).ˆ2);
10*log10(Ex/Enoise)
ans =

15.0000

See Also
noisecg.
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tfrbert

Purpose
Unitary Bertrand time-frequency distribution.

Synopsis
[tfr,t,f] = tfrbert(x)
[tfr,t,f] = tfrbert(x,t)
[tfr,t,f] = tfrbert(x,t,fmin,fmax)
[tfr,t,f] = tfrbert(x,t,fmin,fmax,N)
[tfr,t,f] = tfrbert(x,t,fmin,fmax,N,trace)

Description
tfrbert generates the auto- or cross- unitary Bertrand distribution, defined as

Bx(t, ν) = ν

∫ +∞

−∞
u/2

sinh
(

u
2

) X
(
ν u e−u/2

2 sinh
(

u
2

)
)
X∗

(
ν u e+u/2

2 sinh
(

u
2

)
)
e−j2πνut du

whereX(ν) is the Fourier transform ofx(t).

Name Description Default value
x signal (in time) to be analyzed. Ifx=[x1 x2] ,

tfrbert computes the cross-unitary Bertrand distri-
bution(Nx=length(x))

t time instant(s) on which thetfr is evaluated (1:Nx)
fmin,
fmax

respectively lower and upper frequency bounds of the
analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspec-
ified, you have to enter them at the command line from
the plot of the spectrum.fmin andfmax must be> 0
and≤ 0.5

N number of analyzed voices autoa

trace if nonzero, the progression of the algorithm is shown 0

aThis value, determined fromfmin andfmax , is the next-power-of-two of the minimum value checking
the non-overlapping condition in the fast Mellin transform.
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Name Description Default value
tfr time-frequency matrix containing the coefficients of

the distribution (x-coordinate corresponds to uniformly
sampled time, and y-coordinate corresponds to a geo-
metrically sampled frequency). First row oftfr corre-
sponds to the lowest frequency

f vector of normalized frequencies (geometrically sam-
pled fromfmin to fmax )

When called without output arguments,tfrbert runstfrqview

Example

sig=altes(64,0.1,0.45);
tfrbert(sig);

See Also
all thetfr* functions.

References
[1] J. Bertrand, P. Bertrand “Time-Frequency Representations of Broad-Band Signals”
IEEE ICASSP-88, pp. 2196-2199, New-York, 1988.

[2] J. Bertrand, P. Bertrand “A Class of Affine Wigner Functions with Extended Covari-
ance Properties”, J. Math. Phys., Vol. 33, No. 7, July 1992.
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tfrbj

Purpose
Born-Jordan time-frequency distribution.

Synopsis
[tfr,t,f] = tfrbj(x)
[tfr,t,f] = tfrbj(x,t)
[tfr,t,f] = tfrbj(x,t,N)
[tfr,t,f] = tfrbj(x,t,N,g)
[tfr,t,f] = tfrbj(x,t,N,g,h)
[tfr,t,f] = tfrbj(x,t,N,g,h,trace)

Description
tfrbj computes the Born-Jordan distribution of a discrete-time signalx , or the cross
Born-Jordan representation between two signals. This distribution has the following
expression :

BJx(t, ν) =
∫ +∞

−∞
1
|τ |

∫ t+|τ |/2

t−|τ |/2
x(s+ τ/2) x∗(s− τ/2) ds e−j2πντdτ.

Name Description Default value
x signal if auto-BJ, or [x1,x2] if cross-BJ.

Nx=length(x)
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window with odd length,g(0) be-

ing forced to1
window(odd(N/10))

h frequency smoothing window with odd length,
h(0) being forced to1

window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrbj runstfrqview .

Example

sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);
g=window(9,’Kaiser’); h=window(27,’Kaiser’);
t=1:128; tfrbj(sig,t,128,g,h,1);
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See Also
all thetfr* functions.

Reference
[1] L. Cohen “Generalized Phase-Space Distribution Functions”, J. Math. Phys., Vol. 7,
No. 5, pp. 781-786, 1966.
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tfrbud

Purpose
Butterworth time-frequency distribution.

Synopsis
[tfr,t,f] = tfrbud(x)
[tfr,t,f] = tfrbud(x,t)
[tfr,t,f] = tfrbud(x,t,N)
[tfr,t,f] = tfrbud(x,t,N,g)
[tfr,t,f] = tfrbud(x,t,N,g,h)
[tfr,t,f] = tfrbud(x,t,N,g,h,sigma)
[tfr,t,f] = tfrbud(x,t,N,g,h,sigma,trace)

Description
tfrbud computes the Butterworth distribution of a discrete-time signalx , or the cross
Butterworth representation between two signals. This distribution has the following
expression :

Budx(t, ν) =
∫ +∞

−∞

√
σ

2|τ | e
−|v|√σ/|τ | x(t+ v +

τ

2
) x∗(t+ v − τ

2
) e−j2πντ dv dτ.

Name Description Default value
x signal if auto-BUD, or[x1,x2] if cross-BUD.

Nx=length(x)
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t) .
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1.

window(odd(N/4))

sigma kernel width 1
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrbud runstfrqview
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Example

sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);
g=window(9,’Kaiser’); h=window(27,’Kaiser’);
t=1:128; tfrbud(sig,t,128,g,h,3.6,1);

See Also
all thetfr* functions.

Reference
[1] D. Wu, J. Morris, “Time frequency representations using a radial butterworth
kernel”, Proc IEEE Symp TFTSA Philadelphia PA, pp. 60-63, oct. 1994.

[2] A. Papandreou, G.F. Boudreaux-Bartels, “Generalization of the Choi-Williams and
the Buitterworth Distribution for Time-Frequency Analysis”, IEEE Trans SP, vol 41, pp
463-472, Jan 1993.

[3] F. Auger “Reprsentations Temps-Frquence des Signaux Non-Stationnaires : Synthse
et Contributions” Ph. D. Thesis, Ecole Centrale de Nantes, France, 1991.
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tfrcw

Purpose
Choi-Williams time-frequency distribution.

Synopsis
[tfr,t,f] = tfrcw(x)
[tfr,t,f] = tfrcw(x,t)
[tfr,t,f] = tfrcw(x,t,N)
[tfr,t,f] = tfrcw(x,t,N,g)
[tfr,t,f] = tfrcw(x,t,N,g,h)
[tfr,t,f] = tfrcw(x,t,N,g,h,sigma)
[tfr,t,f] = tfrcw(x,t,N,g,h,sigma,trace)

Description
tfrcw computes the Choi-Williams distribution of a discrete-time signalx , or the cross
Choi-Williams representation between two signals. This distribution has the following
expression :

CWx(t, ν) = 2
∫ ∫ +∞

−∞

√
σ

4
√
π|τ | e

−v2σ/(16τ2) x(t+v+
τ

2
) x∗(t+v− τ

2
) e−j2πντ dv dτ.

Name Description Default value
x signal if auto-CW, or [x1,x2] if cross-CW

(Nx=length(x))
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1

window(odd(N/4))

sigma kernel width 1
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrcw runstfrqview .
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Example

sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);
g=window(9,’Kaiser’); h=window(27,’Kaiser’);
t=1:128; tfrcw(sig,t,128,g,h,3.6,1);

See Also
all thetfr* functions.

Reference
[1] H. Choi, W. Williams “Improved Time-Frequency Representation of Multicompo-
nent Signals Using Exponential Kernels”, IEEE Trans. on Acoustics, Speech and Signal
Processing, Vol. 37, No. 6, June 1989.
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tfrdfla

Purpose
D-Flandrin time-frequency distribution.

Synopsis
[tfr,t,f] = tfrdfla(x)
[tfr,t,f] = tfrdfla(x,t)
[tfr,t,f] = tfrdfla(x,t,fmin,fmax)
[tfr,t,f] = tfrdfla(x,t,fmin,fmax,N)
[tfr,t,f] = tfrdfla(x,t,fmin,fmax,N,trace)

Description
tfrdfla generates the auto- or cross- D-Flandrin distribution. This distribution has
the following expression :

Dx(t, ν) = ν

∫ +∞

−∞
(1− (γ/4)2) X

(
ν(1− γ/4)2

)
X∗

(
ν(1 + γ/4)2

)
e−j2πγtν dγ.

Name Description Default value
x signal (in time) to be analyzed. Ifx=[x1 x2] ,

tfrdfla computes the cross-D-Flandrin distribution
(Nx=length(X) )

t time instant(s) on which thetfr is evaluated (1:Nx)
fmin,
fmax

respectively lower and upper frequency bounds of the
analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspec-
ified, you have to enter them at the command line from
the plot of the spectrum.fmin andfmax must be> 0
and≤ 0.5

N number of analyzed voices autoa

trace if nonzero, the progression of the algorithm is shown 0

aThis value, determined fromfmin andfmax , is the next-power-of-two of the minimum value checking
the non-overlapping condition in the fast Mellin transform.
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Name Description Default value
tfr time-frequency matrix containing the coefficients of the

decomposition (abscissa correspond to uniformly sam-
pled time, and ordonates correspond to a geometrically
sampled frequency). First row oftfr corresponds to
the lowest frequency

f vector of normalized frequencies (geometrically sam-
pled fromfmin to fmax )

When called without output arguments,tfrdfla runstfrqview .

Example

sig=altes(64,0.1,0.45);
tfrdfla(sig);

See Also
all thetfr* functions.

Reference
[1] P. Flandrin “Temps-frquence” Trait des Nouvelles Technologies, srie Traitement du
Signal, Herm̀es, 1993.

Time-Frequency Toolbox Reference Guide, October 26, 2005



tfrgabor

Purpose
Gabor representation of a signal.

Synopsis
[tfr,dgr,gam] = tfrgabor(x)
[tfr,dgr,gam] = tfrgabor(x,N)
[tfr,dgr,gam] = tfrgabor(x,N,Q)
[tfr,dgr,gam] = tfrgabor(x,N,Q,h)
[tfr,dgr,gam] = tfrgabor(x,N,Q,h,trace)

Description
tfrgabor computes the Gabor representation of signalx , for a given synthesis window
h, on a rectangular grid of size(N,M) in the time-frequency plane.MandNmust be such
thatN1 = M * N / Q whereN1=length(x) andQ is an integer corresponding to
the degree of oversampling. The expression of the Gabor representation is the following
:

Gx[n,m;h] =
∑

k

x[k] h∗[k − n] exp [−j2πmk]

Name Description Default value
x signal to be analyzed (length(x)=N1 )
N number of Gabor coefficients in time (N1 must be a

multiple ofN)
divider(N1)

Q degree of oversampling ; must be a divider ofN Q=divider(N)
h synthesis window, which was originally chosen window(odd(N),

as a Gaussian window by Gabor.Length(h) should
be as closed as possible fromN, and must be≥N. h must
be of unit energy, and centered

’gauss’)

trace if nonzero, the progression of the algorithm is shown 0
tfr square modulus of the Gabor coefficients
dgr Gabor coefficients (complex values)
gam biorthogonal (dual frame) window associated toh

When called without output arguments,tfrgabor runstfrqview .
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If Q=1, the time-frequency plane (TFP) is critically sampled, so there is no redundancy.
If Q>1, the TFP is oversampled, allowing a greater numerical stability of the algorithm.

Example

sig=fmlin(128);
tfrgabor(sig,64,32);

See Also
all thetfr* functions.

References
[1] Zibulski, Zeevi ”Oversampling in the Gabor Scheme” IEEE Trans. on Signal
Processing, Vol. 41, No. 8, pp. 2679-87, August 1993.

[2] Wexler, Raz ”Discrete Gabor Expansions” Signal Processing, Vol. 21, No. 3, pp.
207-221, Nov 1990.
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tfrgrd

Purpose
Generalized rectangular time-frequency distribution.

Synopsis
[tfr,t,f] = tfrgrd(x)
[tfr,t,f] = tfrgrd(x,t)
[tfr,t,f] = tfrgrd(x,t,N)
[tfr,t,f] = tfrgrd(x,t,N,g)
[tfr,t,f] = tfrgrd(x,t,N,g,h)
[tfr,t,f] = tfrgrd(x,t,N,g,h,rs)
[tfr,t,f] = tfrgrd(x,t,N,g,h,rs,alpha)
[tfr,t,f] = tfrgrd(x,t,N,g,h,rs,alpha,trace)

Description
tfrgrd computes the Generalized Rectangular Distribution of a discrete-time signalx ,
or the cross GRD representation between two signals. Its expression is :

GRDx(t, ν) =
∫ ∫ +∞

−∞
2rs
|τ |α sinc

(
2πrsv
|τ |α

)
x(t+ v+

τ

2
) x∗(t+ v− τ

2
) e−j2πντ dv dτ

wherers is a scaling factor which determines the spread of the low-pass filter, andα is
the dissymetry ratio.

Name Description Default value
x signal if auto-GRD, or[x1,x2] if cross-GRD

(Nx=length(x))
t time instant(s) (1:Nx )
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t) .
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1.

window(odd(N/4))

rs kernel width 1
alpha dissymmetry ratio 1
trace if nonzero, the progression of the algorithm is shown 0
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Name Description Default value
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrgrd runstfrqview .

Example

sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);
g=window(9,’Kaiser’); h=window(27,’Kaiser’);
t=1:128; tfrgrd(sig,t,128,g,h,36,1/5,1);

See Also
all thetfr* functions.

Reference
[1] F. Auger “Some Simple Parameter Determination Rules for the Generalized Choi-
Williams and Butterworth Distributions” IEEE Signal processing letters, Vol 1, No 1,
pp. 9-11, Jan. 1994.
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tfrideal

Purpose
Ideal TF-representation for given instantaneous frequency laws.

Synopsis
[tfr,t,f] = tfrideal(iflaws)
[tfr,t,f] = tfrideal(iflaws,t)
[tfr,t,f] = tfrideal(iflaws,t,N)
[tfr,t,f] = tfrideal(iflaws,t,N,trace)

Description
tfrideal generates the ideal time-frequency representation corresponding to the
instantaneous frequency laws of the components of a signal.

Name Description Default value
iflaws (M,P) -matrix where each column corresponds to

the instantaneous frequency law of an(M,1) -signal.
TheseP signals do not need to be present at the same
time instants. The values ofiflaws must be between
0 and 0.5

t time instant(s) (1:M)
N number of frequency bins M
trace if nonzero, the progression of the algorithm is shown 0
tfr output time-frequency matrix, of size

(N,length(t))
f vector of normalized frequencies

When called without output arguments, a contour plot oftfr is automatically displayed
on the screen.

Example

N=140; t=0:N-1; [x1,if1]=fmlin(N,0.05,0.3);
[x2,if2]=fmsin(70,0.35,0.45,60);
if2=[zeros(35,1)*NaN;if2;zeros(35,1)*NaN];
tfrideal([if1 if2]);

See Also
plotifl, plotsid and all thetfr* functions.
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tfrmh

Purpose
Margenau-Hill time-frequency distribution.

Synopsis
[tfr,t,f] = tfrmh(x)
[tfr,t,f] = tfrmh(x,t)
[tfr,t,f] = tfrmh(x,t,N)
[tfr,t,f] = tfrmh(x,t,N,trace)

Description
tfrmh computes the Margenau-Hill distribution of a discrete-time signalx , or the cross
Margenau-Hill representation between two signals. This distribution has the following
expression :

MHx(t, ν) = <
{
x(t) X∗(ν) e−j2πνt

}

=
∫ +∞

−∞
1
2

(x(t+ τ) x∗(t) + x(t) x∗(t− τ)) e−j2πντ dτ.

It corresponds to the real part of the Rihaczek distribution (seetfrri ).

Name Description Default
x signal if auto-MH, or [x1,x2] if cross-MH.

(Nx=length(x))
t time instant(s) (1:Nx)
N number of frequency bins Nx
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrmh runstfrqview .

Example

sig=fmlin(128,0.1,0.4); tfrmh(sig,1:128,128,1);

See Also
all thetfr* functions.

Reference
[1] H. Margenhau, R. Hill “Correlation between Measurements in Quantum Theory”,
Prog. Theor. Phys. Vol. 26, pp. 722-738, 1961.
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tfrmhs

Purpose
Margenau-Hill-Spectrogram time-frequency distribution.

Synopsis
[tfr,t,f] = tfrmhs(x)
[tfr,t,f] = tfrmhs(x,t)
[tfr,t,f] = tfrmhs(x,t,N)
[tfr,t,f] = tfrmhs(x,t,N,g)
[tfr,t,f] = tfrmhs(x,t,N,g,h)
[tfr,t,f] = tfrmhs(x,t,N,g,h,trace)

Description
tfrmhs computes the Margenau-Hill-Spectrogram distribution of a discrete-time signal
x , or the cross Margenau-Hill-Spectrogram representation between two signals. This
distribution writes

MHSx(t, ν) = <
{
K−1

gh Fx(t, ν; g) F ∗x (t, ν;h)
}

whereKgh =
∫
h(u) g∗(u) du

andFx(t, ν; g) is the short-time Fourier transform ofx (analysis windowg).

Name Description Default value
x signal if auto-MHS, or[x1,x2] if cross-MHS

(Nx=length(x))
t time instant(s) (1:Nx)
N number of frequency bins Nx
g, h analysis windows, normalized so that the window(odd(N/10)) ,

representation preserves the signal energy window(odd(N/4))
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrmhs runstfrqview .
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Example

sig=fmlin(128,0.1,0.4);
g=window(21,’Kaiser’);
h=window(63,’Kaiser’);
tfrmhs(sig,1:128,64,g,h,1);

See Also
all thetfr* functions.

Reference
[1] R. Hippenstiel, P. De Oliviera “Time-Varying Spectral Estimation Using the Instan-
taneous Power Spectrum (IPS)”, IEEE Trans. on Acoust., Speech and Signal Proc. Vol.
38, No. 10, pp. 1752-1759, 1990.

Time-Frequency Toolbox Reference Guide, October 26, 2005



tfrmmce

Purpose
Minimum mean cross-entropy combination of spectrograms.

Synopsis
[tfr,t,f] = tfrmmce(x)
[tfr,t,f] = tfrmmce(x,h)
[tfr,t,f] = tfrmmce(x,h,t)
[tfr,t,f] = tfrmmce(x,h,t,N)
[tfr,t,f] = tfrmmce(x,h,t,N,trace)

Description
tfrmmce computes the minimum mean cross-entropy combination of spectrograms
using as windows the columns of the matrixh. The expression of this distribution writes

Πx(t, ν) =
E

‖ΠN
k=1|Fx(t, ν;hk)|2/N‖1

ΠN
k=1|Fx(t, ν;hk)|2/N ,

where‖ ‖1 denotes theL1 norm,E the energy of the signal :

E =
∫ +∞

−∞
|x(t)|2 dt =

∫ ∫ +∞

−∞
Πx(t, ν) dt dν = ‖Πx(t, ν)‖1,

andFx(t, ν;hk) the short-time Fourier transform ofx, with analysis windowhk(t).

Name Description Default value
x signal (Nx=length(x) )
h frequency smoothing windows, theh(:,i) being

normalized so as to be of unit energy
t time instant(s) (1:Nx)
N number of frequency bins Nx
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrmmce runstfrqview .
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Example
Here is a combination of three spectrograms with gaussian analysis windows of different
lengths :

sig=fmlin(128,0.1,0.4); h=zeros(19,3);
h(10+(-5:5),1)=window(11);
h(10+(-7:7),2)=window(15);
h(10+(-9:9),3)=window(19);
tfrmmce(sig,h);

See Also
all thetfr* functions.

Reference
[1] P. Loughlin, J. Pitton, B. Hannaford “Approximating Time-Frequency Density Func-
tions via Optimal Combinations of Spectrograms” IEEE Signal Processing Letters, Vol.
1, No. 12, Dec. 1994.
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tfrpage

Purpose
Page time-frequency distribution.

Synopsis
[tfr,t,f] = tfrpage(x)
[tfr,t,f] = tfrpage(x,t)
[tfr,t,f] = tfrpage(x,t,N)
[tfr,t,f] = tfrpage(x,t,N,trace)

Description
tfrpage computes the Page distribution of a discrete-time signalx , or the cross Page
representation between two signals. The expression of the Page distribution is

Px(t, ν) =
d[| ∫ t

−∞ x(u) e−j2πνu du|2]
dt

= 2 <
{
x(t)

(∫ t

−∞
x(u) e−j2πνudu

)∗
e−j2πνt

}
.

Name Description Default value
x signal if auto-Page, or[x1,x2] if cross-Page

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrpage runstfrqview .

Example

sig=fmlin(128,0.1,0.4);
tfrpage(sig);
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See Also
all thetfr* functions.

References
[1] C. Page “Instantaneous Power Spectra” J. Appl. Phys., Vol. 23, pp. 103-106, 1952.

[2] O. Grace “Instantaneous Power Spectra” J. Acoust. Soc. Am., Vol. 69, pp. 191-198,
1981.
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tfrparam

Purpose
Return the paramaters needed to display (or save) a TF-representation.

Synopsis
tfrparam(method)

Description
tfrparam returns on the screen the meaning of the parametersp1..p5 used in
the files tfrqview, tfrview and tfrsave , to view or save a time-frequency
representation.

Name Description Default value
method chosen representation (name of the corresponding M-

file)

Example

tfrparam(’tfrspwv’);

P1 : time smoothing window (odd length, column vector)
P2 : frequency smoothing window (odd length, column vector)

See Also
tfrqview, tfrview, tfrsave.
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tfrpmh

Purpose
Pseudo Margenau-Hill time-frequency distribution.

Synopsis
[tfr,t,f] = tfrpmh(x)
[tfr,t,f] = tfrpmh(x,t)
[tfr,t,f] = tfrpmh(x,t,N)
[tfr,t,f] = tfrpmh(x,t,N,h)
[tfr,t,f] = tfrpmh(x,t,N,h,trace)

Description
tfrpmh computes the Pseudo Margenau-Hill distribution of a discrete-time signalx , or
the cross Pseudo Margenau-Hill representation between two signals. Its expression is

PMHx(t, ν) =
∫ +∞

−∞
h(τ)

2
(x(t+ τ) x∗(t) + x(t) x∗(t− τ)) e−j2πντ dτ.

Name Description Default value
x signal if auto-PMH, or[x1,x2] if cross-PMH

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
h frequency smoothing window,h(0) being forced to

1
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrpmh runstfrqview .

Example

sig=fmlin(128,0.1,0.4); t=1:128;
h=window(63,’Kaiser’);
tfrpmh(sig,t,128,h,1);
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See Also
all thetfr* functions.

References
[1] H. Margenhau, R. Hill “Correlation between Measurements in Quantum Theory”,
Prog. Theor. Phys. Vol. 26, pp. 722-738, 1961.

[2] R. Hippenstiel, P. De Oliviera “Time-Varying Spectral Estimation Using the Instan-
taneous Power Spectrum (IPS)” IEEE Trans. on Acoust., Speech and Signal Proc. Vol.
38, No. 10, pp. 1752-1759, 1990.
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tfrppage

Purpose
Pseudo-Page time-frequency distribution.

Synopsis
[tfr,t,f] = tfrppage(x)
[tfr,t,f] = tfrppage(x,t)
[tfr,t,f] = tfrppage(x,t,N)
[tfr,t,f] = tfrppage(x,t,N,h)
[tfr,t,f] = tfrppage(x,t,N,h,trace)

Description
tfrppage computes the pseudo-Page distribution of a discrete-time signalx , or the
cross pseudo-Page representation between two signals. The pseudo-Page distribution
has the following expression :

PPx(t, ν) = 2 <
{
x(t)

(∫ t

−∞
x(u) h∗(t− u) e−j2πνudu

)∗
e−j2πνt

}
.

Name Description Default value
x signal if auto-PPage, or[x1,x2] if cross-PPage

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
h frequency smoothing window,h(0) being forced to

1
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrppage runstfrqview .

Example

sig=fmlin(128,0.1,0.4);
tfrppage(sig);
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See Also
all thetfr* functions.

References
[1] C. Page “Instantaneous Power Spectra” J. Appl. Phys., Vol. 23, pp. 103-106, 1952.

[2] P. Flandrin, B. Escudier, W. Martin “Reprsentations Temps-Frquence et Causalit”,
GRETSI-85, Juan-les-Pins (France), pp. 65-70, 1985.
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tfrpwv

Purpose
Pseudo Wigner-Ville time-frequency distribution.

Synopsis
[tfr,t,f] = tfrpwv(x)
[tfr,t,f] = tfrpwv(x,t)
[tfr,t,f] = tfrpwv(x,t,N)
[tfr,t,f] = tfrpwv(x,t,N,h)
[tfr,t,f] = tfrpwv(x,t,N,h,trace)

Description
tfrpwv computes the pseudo Wigner-Ville distribution of a discrete-time signalx , or
the cross pseudo Wigner-Ville distribution between two signals. The pseudo Wigner-
Ville distribution writes

PWx(t, ν) =
∫ +∞

−∞
h(τ) x(t+ τ/2) x∗(t− τ/2) e−j2πντ dτ.

Name Description Default value
x signal if auto-PWV, or[x1,x2] if cross-PWV

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
h frequency smoothing window, in the time-domain,

h(0) being forced to1
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrpwv runstfrqview .

Example

sig=fmlin(128,0.1,0.4);
tfrpwv(sig);
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See Also
all thetfr* functions.

Reference
[1] T. Claasen, W. Mecklenbrauker “The Wigner Distribution - A Tool for Time-
Frequency Signal Analysis”3 partsPhilips J. Res., Vol. 35, No. 3, 4/5, 6, pp. 217-250,
276-300, 372-389, 1980.
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tfrqview

Purpose
Quick visualization of a time-frequency representation.

Synopsis
tfrqview(tfr)
tfrqview(tfr,sig)
tfrqview(tfr,sig,t)
tfrqview(tfr,sig,t,method)
tfrqview(tfr,sig,t,method,p1)
tfrqview(tfr,sig,t,method,p1,p2)
tfrqview(tfr,sig,t,method,p1,p2,p3)
tfrqview(tfr,sig,t,method,p1,p2,p3,p4)
tfrqview(tfr,sig,t,method,p1,p2,p3,p4,p5)

Description
tfrqview allows a quick visualization of a time-frequency representation.tfrqview
is called by any time-frequency representation of the toolbox (tfr* functions) when
these functions are called without any output argument.

Name Description Default value
tfr time-frequency representation(MxN)
sig signal in time. If unavailable, putsig=[] as input pa-

rameter
[]

t time instants (1:N)
method name of chosen representation (see thetfr* files for

authorized names)
’type1’

type1 : the representationtfr goes in normalized
frequency from-0.5 to 0.5
type2 : the representationtfr goes in normalized
frequency from0 to 0.5

p1..p5 optional parameters of the representation : run the
file tfrparam(method) to know the meaning of
p1..p5 for your method
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When you use the’save’ option in the main menu, you save all your variables as well
as two strings,TfrQView andTfrView , in a mat file. If you load this file and do
eval(TfrQView) , you will restart the display session undertfrqview ; if you do
eval(TfrView) , you will obtain the exact layout of the screen you had when clicking
on the’save’ button.

Example

sig=fmsin(128);
tfr=tfrwv(sig);
tfrqview(tfr,sig,1:128,’tfrwv’);

See Also
tfrview, tfrsave, tfrparam.
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tfrrgab

Purpose
Reassigned Gabor spectrogram time-frequency distribution.

Synopsis
[tfr,rtfr,hat] = tfrrgab(x)
[tfr,rtfr,hat] = tfrrgab(x,t)
[tfr,rtfr,hat] = tfrrgab(x,t,N)
[tfr,rtfr,hat] = tfrrgab(x,t,N,Nh)
[tfr,rtfr,hat] = tfrrgab(x,t,N,Nh,trace)
[tfr,rtfr,hat] = tfrrgab(x,t,N,Nh,trace,k)

Description
tfrrgab computes the Gabor spectrogram and its reassigned version. The analysis
windowh used in this spectrogram is a gaussian window, which allows a 20 % faster al-
gorithm than with thetfrrsp function (windowsTh andDh defined above are colinear
in this case). The reassigned Gabor spectrogram is given by the following expressions :

S(r)
x (t′, ν ′;h) =

∫ ∫ +∞

−∞
Sx(t, ν;h) δ(t′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν,

where

t̂(x; t, ν) = t−<
{
Fx(t, ν; Th) F ∗x (t, ν;h)

|Fx(t, ν;h)|2
}

ν̂(x; t, ν) = ν + =
{
Fx(t, ν;Dh) F ∗x (t, ν;h)

2π |Fx(t, ν;h)|2
}

with Th(t) = t h(t) andDh(t) = dh
dt (t).

Name Description Default value
x analyzed signal (Nx=length(x) )
t the time instant(s) (1:Nx)
N number of frequency bins Nx
Nh length of the gaussian window N/4
trace if nonzero, the progression of the algorithm is shown 0
k value at both extremities 0.001
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Name Description Default value
tfr,
rtfr

time-frequency representation and its reassigned
version

hat complex matrix of the reassignment vectors

When called without output arguments,tfrrgab runstfrqview .

Example

sig=fmlin(128,0.1,0.4);
tfrrgab(sig,1:128,128,19,1);

See Also
all thetfr* functions.

Reference
[1] F. Auger, P. Flandrin “Improving the Readability of Time-Frequency and Time-Scale
Representations by the Reassignment Method” IEEE Transactions on Signal Processing,
Vol. 43, No. 5, pp. 1068-89, 1995.
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tfrri

Purpose
Rihaczek time-frequency distribution.

Synopsis
[tfr,t,f] = tfrri(x)
[tfr,t,f] = tfrri(x,t)
[tfr,t,f] = tfrri(x,t,N)
[tfr,t,f] = tfrri(x,t,N,trace)

Description
tfrri computes the Rihaczek distribution of a discrete-time signalx , or the cross Ri-
haczek representation between two signals. Its expression is

Rx(t, ν) = x(t) X∗(ν) e−j2πνt.

Name Description Default value
x signal if auto-Ri, or [x1,x2] if cross-Ri

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrri appliestfrqview on the real part of
the distribution, which is equal to the Margenau-Hill distribution.

Example

sig=fmlin(128,0.1,0.4); tfrri(sig);

See Also
all thetfr* functions.

Reference
[1] A. Rihaczek “Signal Energy Distribution in Time and Frequency”, IEEE Tans. on
Info. Theory, Vol. 14, No. 3, pp. 369-374, 1968.
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tfrridb

Purpose
Reduced Interference Distribution with Bessel kernel.

Synopsis
[tfr,t,f] = tfrridb(x)
[tfr,t,f] = tfrridb(x,t)
[tfr,t,f] = tfrridb(x,t,N)
[tfr,t,f] = tfrridb(x,t,N,g)
[tfr,t,f] = tfrridb(x,t,N,g,h)
[tfr,t,f] = tfrridb(x,t,N,g,h,trace)

Description
Reduced Interference Distribution with a kernel based on the Bessel function of the first
kind. tfrridb computes either the distribution of a discrete-time signalx , or the cross
representation between two signals. This distribution writes

RIDBx(t, ν) =
∫ +∞

−∞
h(τ)Rx(t, τ) e−j2πντ dτ

with Rx(t, τ) =
∫ t+|τ |

t−|τ |
2 g(v)
π|τ |

√
1−

(
v − t

τ

)2

x(v +
τ

2
) x∗(v − τ

2
) dv.

Name Description Default value
x signal if auto-RIDB, or[x1,x2] if cross-RIDB

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1

window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrridb runstfrqview .
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Example

sig=[fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4)];
g=window(31,’rect’); h=window(63,’rect’);
tfrridb(sig,1:128,128,g,h,1);

See Also
all thetfr* functions.

Reference
[1] Z. Guo, L.G. Durand, H.C. Lee “The Time-Frequency Distributions of Nonstationary
Signals Based on a Bessel Kernel” IEEE Trans. on Signal Proc., vol 42, pp. 1700-1707,
july 1994.
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tfrridbn

Purpose
Reduced Interference Distribution with a binomial kernel.

Synopsis
[tfr,t,f] = tfrridbn(x)
[tfr,t,f] = tfrridbn(x,t)
[tfr,t,f] = tfrridbn(x,t,N)
[tfr,t,f] = tfrridbn(x,t,N,g)
[tfr,t,f] = tfrridbn(x,t,N,g,h)
[tfr,t,f] = tfrridbn(x,t,N,g,h,trace)

Description
Reduced Interference Distribution with a kernel based on the binomial coefficients.
tfrridbn computes either the distribution of a discrete-time signalx , or the cross
representation between two signals. This distribution has the following discrete-time
continuous-frequency expression :

RIDBNx(t, ν) =
+∞∑

τ=−∞

+|τ |∑

v=−|τ |

1
22|τ |+1

(
2|τ |+ 1
|τ |+ v + 1

)
x[t+v+τ ] x∗[t+v−τ ] e−4πντ .

Name Description Default value
x signal if auto-RIDBN, or[x1,x2] if cross-RIDBN

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1

window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation.
f vector of normalized frequencies

When called without output arguments,tfrridbn runstfrqview .
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Example

sig=[fmlin(128,.05,.3)+fmlin(128,.15,.4)];
tfrridbn(sig);

See Also
all thetfr* functions.

Reference
[1] W. Williams, J. Jeong “Reduced Interference Time-Frequency Distributions” in
Time-Frequency Analysis - Methods and ApplicationsEdited by B. Boashash, Longman-
Cheshire, Melbourne, 1992.
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tfrridh

Purpose
Reduced Interference Distribution with Hanning kernel.

Synopsis
[tfr,t,f] = tfrridh(x)
[tfr,t,f] = tfrridh(x,t)
[tfr,t,f] = tfrridh(x,t,N)
[tfr,t,f] = tfrridh(x,t,N,g)
[tfr,t,f] = tfrridh(x,t,N,g,h)
[tfr,t,f] = tfrridh(x,t,N,g,h,trace)

Description
Reduced Interference Distribution with a kernel based on the Hanning window.
tfrridh computes either the distribution of a discrete-time signalx , or the cross
representation between two signals. This distribution has the following expression :

RIDHx(t, ν) =
∫ +∞

−∞
h(τ)Rx(t, τ) e−j2πντ dτ,

with Rx(t, τ) =
∫ +

|τ |
2

− |τ |
2

g(v)
|τ |

(
1 + cos(

2πv
τ

)
)
x(t+ v +

τ

2
) x∗(t+ v − τ

2
) dv.

Name Description Default value
x signal if auto-RIDH, or[x1,x2] if cross-RIDH

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1

window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrridh runstfrqview .
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Example

sig=[fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4)];
g=window(31,’rect’); h=window(63,’rect’);
tfrridh(sig,1:128,128,g,h,0);

See Also
all thetfr* functions.

Reference
[1] J. Jeong, W. Williams “Kernel Design for Reduced Interference Distributions” IEEE
Trans. on Signal Proc., Vol. 40, No. 2, pp. 402-412, Feb. 1992.
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tfrridt

Purpose
Reduced Interference Distribution with triangular kernel.

Synopsis
[tfr,t,f] = tfrridt(x)
[tfr,t,f] = tfrridt(x,t)
[tfr,t,f] = tfrridt(x,t,N)
[tfr,t,f] = tfrridt(x,t,N,g)
[tfr,t,f] = tfrridt(x,t,N,g,h)
[tfr,t,f] = tfrridt(x,t,N,g,h,trace)

Description
Reduced Interference Distribution with a kernel based on the triangular (or Bartlett)
window. tfrridt computes either the distribution of a discrete-time signalx , or the
cross distribution between two signals. This distribution has the following expression :

RIDTx(t, ν) =
∫ +∞

−∞
h(τ)Rx(t, τ) e−j2πντ dτ

with Rx(t, τ) =
∫ +

|τ |
2

− |τ |
2

2 g(v)
|τ | (1− 2|v|

|τ | ) x(t+ v +
τ

2
)x∗(t+ v − τ

2
) dv.

Name Description Default value
x signal if auto-RIDT, or[x1,x2] if cross-RIDT

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1

window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrridt runstfrqview .
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Example

sig=[fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4)];
g=window(31,’rect’); h=window(63,’rect’);
tfrridt(sig,1:128,128,g,h,0);

See Also
all thetfr* functions.

Reference
[1] J. Jeong, W. Williams “Kernel Design for Reduced Interference Distributions” IEEE
Trans. on Signal Proc., Vol. 40, No. 2, pp. 402-412, Feb. 1992.
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tfrrmsc

Purpose
Reassigned Morlet Scalogram time-frequency distribution.

Synopsis
[tfr,rtfr,hat] = tfrrmsc(x)
[tfr,rtfr,hat] = tfrrmsc(x,t)
[tfr,rtfr,hat] = tfrrmsc(x,t,N)
[tfr,rtfr,hat] = tfrrmsc(x,t,N,f0t)
[tfr,rtfr,hat] = tfrrmsc(x,t,N,f0t,trace)

Description
tfrrmsc computes the Morlet scalogram and its reassigned version. The reassigned
Morlet scalogram has the following expression, whereh(t) is a gaussian window :

SC(r)
x (t′, a′;h) =

∫ ∫ +∞

−∞
a′2 SCx(t, a;h) δ(t′ − t̂(x; t, a)) δ(a′ − â(x; t, a))

dt da

a2
,

where

t̂(x; t, a) = t−<
{
a
Tx(t, a; Th) T ∗x (t, a;h)

|Tx(t, a;h)|2
}

ν̂(x; t, a) =
ν0

â(x; t, a)
=
ν0

a
+ =

{
Tx(t, a;Dh) T ∗x (t, a;h)

2πa |Tx(t, a;h)|2
}

with Th(t) = t h(t) andDh(t) = dh
dt (t). SCx(t, a;h) denotes the scalogram and

Tx(t, a;h) the wavelet transform :

SCx(t, a;h) = |Tx(t, a;h)|2 =
1
|a|

∣∣∣∣
∫ +∞

−∞
x(s) h∗

(
s− t

a

)
ds

∣∣∣∣
2

.

Name Description Default value
x analyzed signal (Nx=length(x) )
t the time instant(s) (1:Nx)
N number of frequency bins Nx
f0t time-bandwidth product of the mother wavelet 2.5
trace if nonzero, the progression of the algorithm is shown 0
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Name Description Default value
tfr,
rtfr

time-frequency representation and its reassigned
version

hat complex matrix of the reassignment vectors

When called without output arguments,tfrrmsc runstfrqview .

Example

sig=fmlin(64,0.1,0.4);
tfrrmsc(sig,1:64,64,2.1,1);

See Also
all thetfr* functions.

Reference
[1] F. Auger, P. Flandrin “Improving the Readability of Time-Frequency and Time-Scale
Representations by the Reassignment Method” IEEE Transactions on Signal Processing,
Vol. 43, No. 5, pp. 1068-89, 1995.
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tfrrpmh

Purpose
Reassigned pseudo Margenau-Hill time-frequency distribution.

Synopsis
[tfr,rtfr,hat] = tfrrpmh(x)
[tfr,rtfr,hat] = tfrrpmh(x,t)
[tfr,rtfr,hat] = tfrrpmh(x,t,N)
[tfr,rtfr,hat] = tfrrpmh(x,t,N,h)
[tfr,rtfr,hat] = tfrrpmh(x,t,N,h,trace)

Description
tfrrpmh computes the pseudo Margenau-Hill distribution and its reassigned version.
The reassigned pseudo-MHD is given by the following expression :

PMH(r)
x (t′, ν′;h) =

∫ +∞

−∞

∫ +∞

−∞
PMHx(t, ν;h) δ(t′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν,

where

t̂(x; t, ν) = t and ν̂(x; t, ν) = ν + =
{
Fx(t, ν;Dh) F ∗x (t, ν;h)

2π|Fx(t, ν;h)|2
}
.

Dh(t) = dh
dt (t) andFx(t, ν;h) is the short-time Fourier transform ofx(t) with analysis

windowh(t).

Name Description Default value
x analyzed signal (Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
h frequency smoothing window,h(0) being forced to

1
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr,
rtfr

time-frequency representation and its reassigned
version

hat complex matrix of the reassignment vectors

When called without output arguments,tfrrpmh runstfrqview .
Example

sig=fmlin(128,0.1,0.4);
h=window(17,’Kaiser’);
tfrrpmh(sig,1:128,64,h,1);
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See Also
all thetfr* functions.

Reference
[1] F. Auger, P. Flandrin “Improving the Readability of Time-Frequency and Time-Scale
Representations by the Reassignment Method” IEEE Transactions on Signal Processing,
Vol. 43, No. 5, pp. 1068-89, 1995.
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tfrrppag

Purpose
Reassigned pseudo Page time-frequency distribution.

Synopsis
[tfr,rtfr,hat] = tfrrppag(x)
[tfr,rtfr,hat] = tfrrppag(x,t)
[tfr,rtfr,hat] = tfrrppag(x,t,N)
[tfr,rtfr,hat] = tfrrppag(x,t,N,h)
[tfr,rtfr,hat] = tfrrppag(x,t,N,h,trace)

Description
tfrrppag computes the pseudo Page distribution and its reassigned version. The re-
assigned pseudo Page distribution is given by the following expressions :

PP (r)
x (t′, ν ′;h) =

∫ ∫ +∞

−∞
PPx(t, ν;h) δ(t′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν,

where

t̂(x; t, ν) = t and ν̂(x; t, ν) = ν + =
{
Fx(t, ν;Dh) F ∗x (t, ν;h)

2π|Fx(t, ν;h)|2
}
.

Dh(t) = dh
dt (t) andFx(t, ν;h) is the short-time Fourier transform ofx(t) with a causal

analysis windowh(t).

Name Description Default value
x analyzed signal (Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
h frequency smoothing window,h(0) being forced to

1
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr,
rtfr

time-frequency representation and its reassigned
version

hat complex matrix of the reassignment vectors

When called without output arguments,tfrrpmh runstfrqview .
Example

sig=fmlin(128,.1,.4);
h=window(65,’gauss’);
tfrrppag(sig,1:128,128,h,1);
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See Also
all thetfr* functions.

Reference
[1] F. Auger, P. Flandrin “Improving the Readability of Time-Frequency and Time-Scale
Representations by the Reassignment Method” IEEE Transactions on Signal Processing,
Vol. 43, No. 5, pp. 1068-89, 1995.
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tfrrpwv

Purpose
Reassigned pseudo Wigner-Ville distribution.

Synopsis
[tfr,rtfr,hat] = tfrrpwv(x)
[tfr,rtfr,hat] = tfrrpwv(x,t)
[tfr,rtfr,hat] = tfrrpwv(x,t,N)
[tfr,rtfr,hat] = tfrrpwv(x,t,N,h)
[tfr,rtfr,hat] = tfrrpwv(x,t,N,h,trace)

Description
tfrrpwv computes the pseudo Wigner-Ville distribution and its reassigned version.
These distributions are given by the following expressions :

PWVx(t, ν;h) =
∫ +∞

−∞
h(τ) x(t+ τ/2) x∗(t− τ/2) e−j2πντ dτ

PWV (r)
x (t′, ν ′;h) =

∫ ∫ +∞

−∞
PWVx(t, ν;h) δ(t′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν,

where

t̂(x; t, ν) = t and ν̂(x; t, ν) = ν + j
PWVx(t, ν;Dh)
2πPWVx(t, ν;h)

with Dh(t) = dh
dt (t).

Name Description Default value
x analyzed signal (Nx=length(x) )
t the time instant(s) (1:Nx)
N number of frequency bins Nx
h frequency smoothing window,h(0) being forced to

1
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr,
rtfr

time-frequency representation and its reassigned
version

hat complex matrix of the reassignment vectors

When called without output arguments,tfrrpwv runstfrqview .
Example

sig=fmlin(128,0.1,0.4);
h=window(17,’Kaiser’);
tfrrpwv(sig,1:128,64,h,1);
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See Also
all thetfr* functions. Reference

[1] F. Auger, P. Flandrin “Improving the Readability of Time-Frequency and Time-Scale
Representations by the Reassignment Method” IEEE Transactions on Signal Processing,
Vol. 43, No. 5, pp. 1068-89, 1995.
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tfrrsp

Purpose
Reassigned Spectrogram.

Synopsis
[tfr,rtfr,hat] = tfrrsp(x)
[tfr,rtfr,hat] = tfrrsp(x,t)
[tfr,rtfr,hat] = tfrrsp(x,t,N)
[tfr,rtfr,hat] = tfrrsp(x,t,N,h)
[tfr,rtfr,hat] = tfrrsp(x,t,N,h,trace)

Description
tfrrsp computes the spectrogram and its reassigned version. The reassigned spectro-
gram is given by the following expression :

S(r)
x (t′, ν′;h) =

∫ ∫ +∞

−∞
Sx(t, ν;h) δ(t′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν,

where

t̂(x; t, ν) = t−<
{
Fx(t, ν; Th) F ∗x (t, ν;h)

|Fx(t, ν;h)|2
}

ν̂(x; t, ν) = ν + =
{
Fx(t, ν;Dh) F ∗x (t, ν;h)

2π |Fx(t, ν;h)|2
}

with Th(t) = t h(t) andDh(t) = dh
dt (t).

Name Description Default value
x analyzed signal (Nx=length(x) )
t the time instant(s) (1:Nx)
N number of frequency bins Nx
h frequency smoothing window,h(0) being forced to

1
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr,
rtfr

time-frequency representation and its reassigned
version

hat complex matrix of the reassignment vectors

When called without output arguments,tfrrsp runstfrqview .
Example

sig=fmlin(128,0.1,0.4);
h=window(17,’Kaiser’);
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tfrrsp(sig,1:128,64,h,1);

See Also
all thetfr* functions.

Reference
[1] F. Auger, P. Flandrin “Improving the Readability of Time-Frequency and Time-Scale
Representations by the Reassignment Method” IEEE Transactions on Signal Processing,
Vol. 43, No. 5, pp. 1068-89, 1995.
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tfrrspwv

Purpose
Reassigned smoothed pseudo Wigner-Ville distribution.

Synopsis
[tfr,rtfr,hat] = tfrrspwv(x)
[tfr,rtfr,hat] = tfrrspwv(x,t)
[tfr,rtfr,hat] = tfrrspwv(x,t,N)
[tfr,rtfr,hat] = tfrrspwv(x,t,N,g)
[tfr,rtfr,hat] = tfrrspwv(x,t,N,g,h)
[tfr,rtfr,hat] = tfrrspwv(x,t,N,g,h,trace)

Description
tfrrspwv computes the smoothed pseudo Wigner-Ville distribution and its reassigned
version. These distributions are given by the following expressions :

SPWVx(t, ν; g, h) =
∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(s− t) x(s+ τ/2) x∗(s− τ/2) ds e−j2πντ dτ

SPWV (r)
x (t′, ν ′; g, h) =

∫ ∫ +∞

−∞
SPWVx(t, ν; g, h) δ(t′ − t̂(x; t, ν)) δ(ν ′ − ν̂(x; t, ν)) dt dν,

where

t̂(x; t, ν) = t− SPWVx(t, ν; Tg, h)
2π SPWVx(t, ν; g, h)

ν̂(x; t, ν) = ν + j
SPWVx(t, ν; g,Dh)

2π SPWVx(t, ν; g, h)

with Dh(t) = dh
dt (t).

Name Description Default value
x analyzed signal (Nx=length(x) )
t the time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1

window(odd(N/4))
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Name Description Default value
trace if nonzero, the progression of the algorithm is shown 0
tfr,
rtfr

time-frequency representation and its reassigned
version.

hat complex matrix of the reassignment vectors

When called without output arguments,tfrrspwv runstfrqview .

Example

sig=fmlin(128,0.05,0.15)+fmlin(128,0.3,0.4);
g=window(15,’Kaiser’); h=window(63,’Kaiser’);
tfrrspwv(sig,1:128,64,g,h,1);

See Also
all thetfr* functions.

Reference
[1] F. Auger, P. Flandrin “Improving the Readability of Time-Frequency and Time-Scale
Representations by the Reassignment Method” IEEE Transactions on Signal Processing,
Vol. 43, No. 5, pp. 1068-89, 1995.
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tfrsave

Purpose
Save the parameters of a time-frequency representation.

Synopsis
tfrsave(name,tfr,method,sig)
tfrsave(name,tfr,method,sig,t)
tfrsave(name,tfr,method,sig,t,f)
tfrsave(name,tfr,method,sig,t,f,p1)
tfrsave(name,tfr,method,sig,t,f,p1,p2)
tfrsave(name,tfr,method,sig,t,f,p1,p2,p3)
tfrsave(name,tfr,method,sig,t,f,p1,p2,p3,p4)
tfrsave(name,tfr,method,sig,t,f,p1,p2,p3,p4,p5)

Description
tfrsave saves the parameters of a time-frequency representation in the file
name.mat . Two additional parameters are saved :TfrQView and TfrView .
If you load the file name.mat and do eval(TfrQView) , you will restart the
display session undertfrqview ; if you do eval(TfrView) , you will display the
representation by means oftfrview .

Name Description Default value
name name of the mat-file (less than 8 characters)
tfr time-frequency representation(M,N)
method chosen representation
sig signal from which thetfr was obtained
t time instant(s) (1:N)
f frequency bins 0.5*(0:M-1)/M
p1..p5 optional parameters : runtfrparam(method) to

know the meaning ofp1..p5 for your method

Example

sig=fmlin(64); tfr=tfrwv(sig);
tfrsave(’wigner’,tfr,’TFRWV’,sig,1:64);
clear; load wigner; eval(TfrQView);

See Also
tfrqview, tfrview, tfrparam.
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tfrscalo

Purpose
Scalogram, for Morlet or Mexican hat wavelet.

Synopsis
[tfr,t,f,wt] = tfrscalo(x)
[tfr,t,f,wt] = tfrscalo(x,t)
[tfr,t,f,wt] = tfrscalo(x,t,wave)
[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax)
[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax,N)
[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax,N,trace)

Description

tfrscalo computes the scalogram (squared magnitude of a continuous wavelet trans-
form). Its expression is the following :

SCx(t, a;h) = |Tx(t, a;h)|2 =
1
|a|

∣∣∣∣
∫ +∞

−∞
x(s) h∗

(
s− t

a

)
ds

∣∣∣∣
2

.

This time-scale expression has an equivalent time-frequecy expression, obtained using
the formal identificationa = ν0

ν , whereν0 is the central frequency of the mother wavelet
h(t).

Name Description Default value
x signal to be analyzed (Nx=length(x) ). Its analytic

version is used (z=hilbert(real(x)) )
t time instant(s) on which thetfr is evaluated (1:Nx)
wave half length of the Morlet analyzing wavelet at coarsest

scale. Ifwave=0 , the Mexican hat is used
sqrt(Nx)

fmin,
fmax

respectively lower and upper frequency bounds of the
analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspec-
ified, you have to enter them at the command line from
the plot of the spectrum.fmin andfmax must be>0
and≤0.5

N number of analyzed voices autoa

aThis value, determined fromfmin andfmax , is the next-power-of-two of the minimum value checking
the non-overlapping condition in the fast Mellin transform.

Name Description Default value
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency matrix containing the coefficients of the

decomposition (abscissa correspond to uniformly sam-
pled time, and ordinates correspond to a geometrically
sampled frequency). First row oftfr corresponds to
the lowest frequency.

f vector of normalized frequencies (geometrically sam-
pled fromfmin to fmax )

wt Complex matrix containing the corresponding wavelet
transform. The scalogramtfr is the squared modulus
of wt

When called without output arguments,tfrscalo runstfrqview .
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Example

sig=altes(64,0.1,0.45);
tfrscalo(sig);

See Also
all thetfr* functions.

Reference
[1] O. Rioul, P. Flandrin “Time-Scale Distributions : A General Class Extending Wavelet
Transforms”, IEEE Transactions on Signal Processing, Vol. 40, No. 7, pp. 1746-57, July
1992.
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tfrsp

Purpose
Spectrogram time-frequency distribution.

Synopsis
[tfr,t,f] = tfrsp(x)
[tfr,t,f] = tfrsp(x,t)
[tfr,t,f] = tfrsp(x,t,N)
[tfr,t,f] = tfrsp(x,t,N,h)
[tfr,t,f] = tfrsp(x,t,N,h,trace)

Description
tfrsp computes the spectrogram distribution of a discrete-time signalx . It corresponds
to the squared modulus of the short-time Fourier transform. Its expression writes

Sx(t, ν) =
∣∣∣∣
∫ +∞

−∞
x(u) h∗(u− t) e−j2πνu du

∣∣∣∣
2

.

Name Description Default value
x analyzed signal (Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
h smoothing window,h being normalized so as to be

of unit energy.
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrsp runstfrqview .

Example

sig=fmlin(128,0.1,0.4);
h=window(17,’Kaiser’);
tfrsp(sig,1:128,64,h,1);
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See Also
all thetfr* functions.

References
[1] W. Koenig, H. Dunn, L. Lacy “The sound spectrograph”, J. Acoust. Soc. Am., Vol.
18, No. 1, pp. 19-49, 1946.

[2] J. Allen, L. Rabiner “A Unified Approach to Short-Time Fourier Analysis and Syn-
thesis” Proc. IEEE, Vol. 65, No. 11, pp. 1558-64, 1977.
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tfrspaw

Purpose
Smoothed pseudo affine Wigner time-frequency distributions.

Synopsis
[tfr,t,f] = tfrspaw(x)
[tfr,t,f] = tfrspaw(x,t)
[tfr,t,f] = tfrspaw(x,t,k)
[tfr,t,f] = tfrspaw(x,t,k,nh0)
[tfr,t,f] = tfrspaw(x,t,k,nh0,ng0)
[tfr,t,f] = tfrspaw(x,t,k,nh0,ng0,fmin,fmax)
[tfr,t,f] = tfrspaw(x,t,k,nh0,ng0,fmin,fmax,N)
[tfr,t,f] = tfrspaw(x,t,k,nh0,ng0,fmin,fmax,N,trace)

Description

tfrspaw generates the auto- or cross- smoothed pseudo affine Wigner distributions. Its
general expression writes

P̃ k
x (t, ν) =

∫ +∞

−∞
µk(u)√

λk(u)λk(−u)
Tx(t, λk(u)ν;ψ) T ∗x (t, λk(−u)ν;ψ) du,

whereTx(t, ν;ψ) is the continuous wavelet transform,

ψ(t) = (πt20)
−1/4 exp

[
−1

2
(t/t0)2 + j2πν0t

]

is the Morlet wavelet, andλk(u, k) =
(

k(e−u−1)
e−ku−1

) 1
k−1

.

Name Description Default
x signal (in time) to be analyzed. Ifx=[x1 x2] , tfrspaw

computes the cross-smoothed pseudo affine Wigner distribu-
tion. (Nx=length(X))

t time instant(s) on which thetfr is evaluated (1:Nx)
k label of the distribution 0

k=-1 : smoothed pseudo active Unterberger
k=0 : smoothed pseudo Bertrand
k=1/2 : smoothed pseudo D-Flandrin
k=2 : affine smoothed pseudo Wigner-Ville

Name Description Default value
nh0 half length of the analyzing wavelet at coarsest scale.

A Morlet wavelet is used. nh0 controls the frequency
smoothing of the smoothed pseudo affine Wigner distribu-
tion

sqrt(Nx)

ng0 half length of the time smoothing window.ng0=0 corre-
sponds to the pseudo affine Wigner distribution

0

fmin,
fmax

respectively lower and upper frequency bounds of the an-
alyzed signal. These parameters fix the equivalent fre-
quency bandwidth (expressed in Hz). When unspecified,
you have to enter them at the command line from the plot
of the spectrum.fmin andfmax must be>0 and≤0.5

N number of analyzed voices autoa

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency matrix containing the coefficients of the

decomposition (abscissa correspond to uniformly sampled
time, and ordinates correspond to a geometrically sampled
frequency). First row oftfr corresponds to the lowest
frequency

f vector of normalized frequencies (geometrically sampled
from fmin to fmax )

When called without output arguments,tfrspaw runstfrqview .

aThis value, determined fromfmin andfmax , is the next-power-of-two of the minimum value checking
the non-overlapping condition in the fast Mellin transform.
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Example

sig=altes(64,0.1,0.45);
tfrspaw(sig);

See Also
all thetfr* functions.

Reference
[1] P. Gonalvs, R. Baraniuk “Pseudo Affine Wigner Distributions and Kernel Formula-
tion” Submitted to IEEE Transactions on Signal Processing, 1996.
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tfrspwv

Purpose
Smoothed pseudo Wigner-Ville time-frequency distribution.

Synopsis
[tfr,t,f] = tfrspwv(x)
[tfr,t,f] = tfrspwv(x,t)
[tfr,t,f] = tfrspwv(x,t,N)
[tfr,t,f] = tfrspwv(x,t,N,g)
[tfr,t,f] = tfrspwv(x,t,N,g,h)
[tfr,t,f] = tfrspwv(x,t,N,g,h,trace)

Description
tfrspwv computes the smoothed pseudo Wigner-Ville distribution of a discrete-time
signalx , or the cross smoothed pseudo Wigner-Ville distribution between two signals.
Its expression writes

SPWx(t, ν) =
∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(s− t) x(s+ τ/2) x∗(s− τ/2) ds e−j2πντ dτ.

Name Description Default value
x signal if auto-SPWV, or[x1,x2] if cross-SPWV

(Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window in the time-domain,
h(0) being forced to1

window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without output arguments,tfrspwv runstfrqview .
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Example

sig=fmlin(128,0.05,0.15)+fmlin(128,0.3,0.4);
g=window(15,’Kaiser’); h=window(63,’Kaiser’);
tfrspwv(sig,1:128,64,g,h,1);

See Also
all thetfr* functions.

References
[1] P. Flandrin “Some Features of Time-Frequency Representations of Multi-Component
Signals” IEEE Int. Conf. on Acoust. Speech and Signal Proc., pp. 41.B.4.1-41.B.4.4,
San Diego (CA), 1984.

[2] T. Claasen, W. Mecklenbrauker “The Wigner Distribution - A Tool for Time-
Frequency Signal Analysis”3 partsPhilips J. Res., Vol. 35, No. 3, 4/5, 6, pp. 217-250,
276-300, 372-389, 1980.
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tfrstft

Purpose
Short time Fourier transform.

Synopsis
[tfr,t,f] = tfrstft(x)
[tfr,t,f] = tfrstft(x,t)
[tfr,t,f] = tfrstft(x,t,N)
[tfr,t,f] = tfrstft(x,t,N,h)
[tfr,t,f] = tfrstft(x,t,N,h,trace)

Description
tfrstft computes the short-time Fourier transform of a discrete-time signalx . Its
continuous expression writes

Fx(t, ν;h) =
∫ +∞

−∞
x(u) h∗(u− t) e−j2πνu du

whereh(t) is ashort time analysis windowlocalized aroundt = 0 andν = 0.

Name Description Default value
x signal (Nx=length(x) )
t time instant(s) (1:Nx)
N number of frequency bins Nx
h smoothing window,h being normalized so as to be

of unit energy.
window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency decomposition (complex values).

The frequency axis is graduated from-0.5 to 0.5
f vector of normalized frequencies

When called without output arguments,tfrstft runstfrqview , which displays the
squared modulus of the short-time Fourier transform.
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Example

sig=[fmlin(128,0.05,.45);fmlin(128,0.35,.15)];
tfr=tfrstft(sig);
subplot(211); imagesc(abs(tfr(1:128,:))); axis(’xy’)
subplot(212); imagesc(angle(tfr(1:128,:))); axis(’xy’)

See Also
all thetfr* functions.

References
[1] J. Allen, L. Rabiner “A Unified Approach to Short-Time Fourier Analysis and
Synthesis” Proc. of the IEEE, Vol. 65, No. 11, pp. 1558-64, Nov. 1977.

[2] S. Nawab, T. Quatieri “Short-Time Fourier Transform”, chapter inAdvanced Topics
in Signal ProcessingJ. Lim and A. Oppenheim eds. Prentice Hall, Englewood Cliffs,
NJ, 1988.
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tfrunter

Purpose
Unterberger time-frequency distribution, active or passive form.

Synopsis
[tfr,t,f] = tfrunter(x)
[tfr,t,f] = tfrunter(x,t)
[tfr,t,f] = tfrunter(x,t,form)
[tfr,t,f] = tfrunter(x,t,form,fmin,fmax)
[tfr,t,f] = tfrunter(x,t,form,fmin,fmax,N)
[tfr,t,f] = tfrunter(x,t,form,fmin,fmax,N,trace)

Description

tfrunter generates the auto- or cross-Unterberger distribution (active or passive
form). The expression of the active Unterberger distribution writes

U (a)
x (t, a) =

1
|a|

∫ +∞

0
(1 +

1
α2

) X
(
α

a

)
X∗

(
1
αa

)
ej2π(α−1/α) t

a dα,

whereas the passive Unterberger distribution writes

U (p)
x (t, a) =

1
|a|

∫ +∞

0

2
α
X

(
α

a

)
X∗

(
1
αa

)
ej2π(α− 1

α
) t

a dα.

Name Description Default value
x signal (in time) to be analyzed. Ifx=[x1 x2] ,

tfrunter computes the cross-Unterberger distribu-
tion (Nx=length(x))

t time instant(s) on which thetfr is evaluated (1:Nx)
form ’A’ for active, ’P’ for passive Unterberger distribu-

tion
’A’

fmin,
fmax

respectively lower and upper frequency bounds of the
analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspec-
ified, you have to enter them at the command line from
the plot of the spectrum.fmin andfmax must be>0
and≤0.5

N number of analyzed voices autoa

aThis value, determined fromfmin andfmax , is the next-power-of-two of the minimum value checking
the non-overlapping condition in the fast Mellin transform.

Name Description Default value
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency matrix containing the coefficients of the

decomposition (abscissa correspond to uniformly sam-
pled time, and ordinates correspond to a geometrically
sampled frequency). First row oftfr corresponds to
the lowest frequency.

f vector of normalized frequencies (geometrically sam-
pled fromfmin to fmax )

When called without output arguments,tfrunter runstfrqview .
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Example

sig=altes(64,0.1,0.45);
tfrunter(sig);

See Also
all thetfr* functions.

References
[1] A. Unterberger “The Calculus of Pseudo-Differential Operators of Fuchs Type”
Comm. in Part. Diff. Eq., Vol. 9, pp. 1179-1236, 1984.

[2] P. Flandrin, P. Gonalvs “Geometry of Affine Time-Frequency Distributions” Applied
and Computational Harmonic Analysis, Vol. 3, pp. 10-39, January 1996.
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tfrview

Purpose
Visualization of time-frequency representations.

Synopsis
tfrview(tfr,sig,t,method,param,map)
tfrview(tfr,sig,t,method,param,map,p1)
tfrview(tfr,sig,t,method,param,map,p1,p2)
tfrview(tfr,sig,t,method,param,map,p1,p2,p3)
tfrview(tfr,sig,t,method,param,map,p1,p2,p3,p4)
tfrview(tfr,sig,t,method,param,map,p1,p2,p3,p4,p5)

Description

tfrview visualizes a time-frequency representation. It is called throughtfrqview
from any tfr* function when this function is called without output argument.Use
tfrqview preferably.

Name Description
tfr time-frequency representation
sig signal in the time-domain
t time instants
method chosen representation (name of the corresponding M-file)
param visualization parameter vector :

param = [display linlog threshold levnumb nf2 ...
layout access state fs isgrid] where

- display=1..5 for contour, imagesc, pcolor, surf or
mesh
- linlog=0/1 for linearly/logarithmically spaced levels for the amplitude
of tfr
- threshold is the visualization threshold, in %
- levelnumb is the number of levels used withcontour
- nf2 is the number of frequency bins displayed
- layout determines the layout of the figure :tfr alone (1),tfr andsig
(2), tfr and spectrum (3),tfr andsig and spectrum (4), add/remove the
colorbar (5)
- access depends on the way you access totfrview : from the com-
mand line (0) ; fromtfrqview , except after a change in the sampling
frequency or in the layout (1) ; fromtfrqview , after a change in the
layout (2) ; fromtfrqview , after a change in the sampling frequency (3)

Name Description Default value
- state depends on the signal/colorbar presence : no
signal, no colorbar (0) ; signal, no colorbar (1) ; no sig-
nal, colorbar (2) ; signal and colorbar (3)
- fs is the sampling frequency
- isgrid depends on the grids’ presence :
isgrid=isgridsig+2*isgridspe+4*isgridtfr
whereisgridsig=1 if a grid is present on the signal
and=0 if not, and so on

map selected colormap
p1..p5 parameters of the representation. Run

tfrparam(method) to know the meaning of
p1..p5
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See Also
tfrqview, tfrparam, tfrsave.
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tfrwv

Purpose
Wigner-Ville time-frequency distribution.

Synopsis
[tfr,t,f] = tfrwv(x)
[tfr,t,f] = tfrwv(x,t)
[tfr,t,f] = tfrwv(x,t,N)
[tfr,t,f] = tfrwv(x,t,N,trace)

Description
tfrwv computes the Wigner-Ville distribution of a discrete-time signalx , or the cross
Wigner-Ville representation between two signals. The continuous expression of the
Wigner-Ville distribution writes

Wx(t, ν) =
∫ +∞

−∞
x(t+ τ/2) x∗(t− τ/2) e−j2πντ dτ,

Name Description Default value
x signal if auto-WV, or [x1,x2] if cross-WV

(Nx=length(x))
t time instant(s) (1:Nx)
N number of frequency bins Nx
trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation.
f vector of normalized frequencies

When called without output arguments,tfrwv runstfrqview .

Example
The Wigner-Ville distribution is perfectly localized on linear chirp signals. Here is what
we obtain in the discrete case :

sig=fmlin(128,0.1,0.4);
tfrwv(sig);

See Also
all thetfr* functions.
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References
[1] E. Wigner “On the Quantum Correction for Thermodynamic Equilibrium” Phys.
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tfrzam

Purpose
Zhao-Atlas-Marks time-frequency distribution.

Synopsis
[tfr,t,f] = tfrzam(x)
[tfr,t,f] = tfrzam(x,t)
[tfr,t,f] = tfrzam(x,t,N)
[tfr,t,f] = tfrzam(x,t,N,g)
[tfr,t,f] = tfrzam(x,t,N,g,h)
[tfr,t,f] = tfrzam(x,t,N,g,h,trace)

Description
tfrzam computes the Zhao-Atlas-Marks distribution of a discrete-time signalx , or the
cross Zhao-Atlas-Marks representation between two signals. This distribution writes

ZAMx(t, ν) =
∫ +∞

−∞

[
h(τ)

∫ t+|τ |/2

t−|τ |/2
x(s+ τ/2) x∗(s− τ/2) ds

]
e−j2πντ dτ.

It is also known as theCone-Shaped Kernel distribution.

Name Description Default value
x signal if auto-ZAM, or [x1,x2] if cross-ZAM

(Nx=length(x))
t time instant(s) (1:Nx)
N number of frequency bins Nx
g time smoothing window,G(0) being forced to1,

whereG(f) is the Fourier transform ofg(t)
window(odd(N/10))

h frequency smoothing window,h(0) being forced to
1

window(odd(N/4))

trace if nonzero, the progression of the algorithm is shown 0
tfr time-frequency representation
f vector of normalized frequencies

When called without outpout arguments,tfrzam runstfrqview .
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Example

sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);
g=window(9,’Kaiser’); h=window(27,’Kaiser’);
tfrzam(sig,1:128,128,g,h,1);

See Also
all thetfr* functions.

Reference
[1] Y. Zhao, L. Atlas, R. Marks “The Use of the Cone-Shaped Kernels for Generalized
Time-Frequency Representations of Nonstationary Signals” IEEE Trans. on Acoust.,
Speech and Signal Proc., Vol. 38, No. 7, pp. 1084-91, 1990.
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tftb window

Purpose
Window generation.

Synopsis
h = tftb\_window(N)
h = tftb\_window(N,name)
h = tftb\_window(N,name,param)
h = tftb\_window(N,name,param,param2)

Description
tftb window yields a window of lengthNwith a given shape.

Name Description Default value
N length of the window
name name of the window shape ’Hamming’
param optional parameter
param2 second optional parameter
h output window

Possible names are :
’Hamming’, ’Hanning’, ’Nuttall’, ’Papoulis’, ’Harris’,
’Rect’, ’Triang’, ’Bartlett’, ’BartHann’, ’Blackman’,
’Gauss’, ’Parzen’, ’Kaiser’, ’Dolph’, ’Hanna’, ’Nutbess’,
’spline’

For the gaussian window, an optional parameterk sets the value at both extremities.
The default value is0.005 .

For the Kaiser-Bessel window, an optional parameter sets the scale. The default value is
3*pi .

For the Spline windows,h=tftb window(N,’spline’,nfreq,p) yields a
spline weighting function of orderp and frequency bandwidth proportional tonfreq .

Example

h=tftb\_window(256,’Gauss’,0.005);
plot(h);
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See Also
dwindow.

Reference
[1] F. Harris “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform”, Proceedings of the IEEE, Vol. 66, pp. 51-83, 1978.

[2] A.H. Nuttal, ”A Two-Parameter Class of Bessel Weighting Functions for Spectral
Analysis or Array Processing”, IEEE Trans on ASSP, Vol 31, pp 1309-1311, Oct 1983.

[3] Y. Ho Ha, J.A. Pearce, ”A New Window and Comparison to Standard Windows”,
Trans IEEE ASSP, Vol 37, No 2, pp 298-300, February 1989.

[4] C.S. Burrus, “Multiband Least Squares FIR Filter Design”, Trans IEEE SP, Vol 43,
No 2, pp 412-421, February 1995.
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zak

Purpose
Zak transform.

Synopsis
dzt = zak(sig)
dzt = zak(sig,N)
dzt = zak(sig,N,M)

Description
zak computes the Zak transform of a signal. Its definition is given by

Zsig(t, ν) =
+∞∑

n=−∞
sig(t+ n) e−j2πnν .

Name Description Default value
sig Signal to be analyzed(length(sig)=N1)
N number of Zak coefficients in time (N1 must be a mul-

tiple of N)
divider(N1)

M number of Zak coefficients in frequency (N1 must be a
multiple ofM)

N1/N

dzt Output matrix (N,M) containing the discrete Zak
transform

Example

sig=fmlin(256);
DZT=zak(sig);
imagesc(DZT);

See Also
izak, tfrgabor.

Reference
[1] L. Auslander, I. Gertner, R. Tolimieri, “The Discrete Zak Transform Application
to Time-Frequency Analysis and Synthesis of Nonstationary Signals” IEEE Trans. on
Signal Proc., Vol. 39, No. 4, pp. 825-835, April 1991.
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document ”free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of ”copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
”Document” , below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as”you” . You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does not
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fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers
is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that
is not ”Transparent” is called”Opaque” .

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and
the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which do
not have any title page as such, ”Title Page” means the text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

A section”Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as”Acknowledgements”, ”Dedications” , ”Endorsements”, or
”History” .) To ”Preserve the Title” of such a section when you modify the Document means that it remains
a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void
and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
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If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document).
You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.
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G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled ”History” in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of
the Document, and likewise the network locations given in the Document for previous versions it was
based on. These may be placed in the ”History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original publisher of the version it
refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with any Invariant
Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license
notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.
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5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number. Make the same adjustment to the
section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various original documents,
forming one section Entitled ”History”; likewise combine any sections Entitled ”Acknowledgements”, and any
sections Entitled ”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for verbatim copying of each of the documents
in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an ”aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Doc-
ument is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version of
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this License and the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under

this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License

from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License ”or any later version” applies to it, you have the option of following
the terms and conditions either of that specified version or of any later version that has been published (not as
a draft) by the Free Software Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put

the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.” line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.
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